Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Singlet fission (SF) has the potential to play a key role in photovoltaics since it generates a larger number of longer-lived triplet excitons after photoabsorption. Intramolecular SF (iSF) is of special interest since it enables tuning of SF efficiency by adjusting interchromophore configuration through covalent interaction. However, as elaborated in the present work, iSF chromophores are doomed to dissatisfy one general thermodynamic criterion for all SF chromophores, intramolecular or not: () ≥ 2(), and therefore, the fusion of two triplet excitons to one triplet exciton is thermodynamically favorable. In our nonadiabatic quantum dynamics simulation for a model iSF chromophore, this expected fusion does not occur, because of the inefficient intersystem crossing hidden under the cover of internal conversion of the triplet fusion. A reconciliation is achieved between the dissatisfaction of () ≥ 2() and the large tetraradical character for general iSF chromophores.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.3c03238 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!