Nonadiabatic Molecular Dynamics with Non-Condon Effect of Charge Carrier Dynamics.

J Am Chem Soc

College of Chemistry and Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China.

Published: January 2024

Nonradiative multiphonon transitions play a crucial role in understanding charge carrier dynamics. To capture the non-Condon effect in nonadiabatic molecular dynamics (NA-MD), we develop a simple and accurate method to calculate noncrossing and crossing k-point NA coupling in momentum space on an equal footing and implement it with a trajectory surface hopping algorithm. Multiple k-point MD trajectories can provide sufficient nonzero momentum multiphonons coupled to electrons, and the momentum conservation is maintained during nonvertical electron transition. The simulations of indirect bandgap transition in silicon and intra- and intervalley transitions in graphene show that incorporation of the non-Condon effect is needed to correctly depict these types of charge dynamics. In particular, a hidden process is responsible for the delayed nonradiative electron-hole recombination in silicon: the thermal-assisted rapid trapping of an excited electron at the conduction band minimum by a long-lived higher energy state through a nonvertical transition extends charge carrier lifetime, approaching 1 ns, which is about 1.5 times slower than the direct bandgap recombination. For graphene, intervalley scattering takes place within about 225 fs, which can occur only when the intravalley relaxation proceeds to about 50 fs to gain enough phonon momentum. The intra- and intervalley scattering constitute energy relaxation, which completes within sub-500 fs. All the simulated time scales are in excellent agreement with experiments. The study establishes the underlying mechanisms for a long-lived charge carrier in silicon and valley scattering in graphene and underscores the robustness of the non-Condon approximation NA-MD method, which is suitable for rigid, soft, and large defective systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.3c12687DOI Listing

Publication Analysis

Top Keywords

charge carrier
16
nonadiabatic molecular
8
molecular dynamics
8
carrier dynamics
8
intra- intervalley
8
intervalley scattering
8
dynamics
5
charge
5
non-condon
4
dynamics non-condon
4

Similar Publications

The effective S-scheme homojunction relies on the precise regulation of band structure and construction of advantaged charge migration interfaces. Here, the electronic structural properties of g-C3N4 were modulated through meticulous polymerization of self-assembled supramolecular precursors. Experimental and DFT results indicate that both the intrinsic bandgap and surface electronic characteristics were adjusted, leading to the formation of an in-situ reconstructed homojunction interface facilitated by intrinsic van der Waals forces.

View Article and Find Full Text PDF

Isomer-Effects of Aminophenol Decorated Gold Nanoclusters for HO Photoproduction via Two-Step One-Electron Oxygen Reduction Reaction.

Small

January 2025

Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China.

Gold (Au) nanoclustersare promising photocatalysts for biomedicine, sensing, and environmental remediation. However, the short carrier lifetime, inherent instability, and unclear charge transfer mechanism hinder their application. Herein, the Au nanoclusters decorated with three different isomers of o-Aminophenol, m-Aminophenol, and p-Aminophenol are synthesized, namely o-Au, m-Au, and p-Au, which achieve efficient hydrogen peroxide (HO) photoproduction through two-step one-electron oxygen reduction reaction (ORR).

View Article and Find Full Text PDF

Advancing next-generation battery technologies requires a thorough understanding of the intricate phenomena occurring at anodic interfaces. This focused review explores key interfacial processes, examining their thermodynamics and consequences in ion transport and charge transfer kinetics. It begins with a discussion on the formation of the electro chemical double layer, based on the GuoyChapman model, and explores how charge carriers achieve equilibrium at the interface.

View Article and Find Full Text PDF

Self-powered broadband photodetectors (SPBPDs) hold great potential for next-generation optoelectronic applications, but their performance is often limited by interface defects that impair charge transport and increase recombination losses. In this work, we report the enhancement of the photodetection efficiency of SPBPDs by partially substituting copper (Cu) with silver (Ag) in kesterite CuZnSnS (ACZTS) thin films. Varying Ag concentrations (0%, 2%, 4%, 6%) are incorporated into the CZTS layer, forming a TiO/ACZTS heterojunction in superstrate configuration fabricated via a low-cost sol-gel spin-coating technique with low-temperature open air annealing avoiding conventional postdeposition sulfurization or selenization.

View Article and Find Full Text PDF

The delocalization length of charge carriers in organic semiconductors influences their mobility and is an important factor in the design of functional materials. Here, we have studied the radical anions of a series of linear and cyclic butadiyne-linked porphyrin oligomers using CW-EPR, H Mims ENDOR and NIR/MIR spectroelectrochemistry together with DFT calculations and multiscale molecular modeling. Low-temperature hyperfine EPR spectroscopy and optical data show that polarons are delocalized nonuniformly over about four porphyrins with most of the spin density on just two units even in the cyclic structures, in which all porphyrin sites are identical.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!