Enzyme-mimicking confined catalysis has attracted great interest in heterogeneous catalytic systems that can regulate the geometric or electronic structure of the active site and improve its performance. Herein, a liquid-assisted chemical vapor deposition (LCVD) strategy is proposed to simultaneously confine the single-atom Ru sites onto sidewalls and Janus Ni/NiO nanoparticles (NPs) at the apical nanocavities to thoroughly energize the N-doped carbon nanotube arrays (denoted as Ni/NiO@Ru-NC). The bifunctional Ni/NiO@Ru-NC electrocatalyst exhibits overpotentials of 88 and 261 mV for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) at 100 mA cm in alkaline solution, respectively, all ranking the top tier among the carbon-supported metal-based electrocatalysts. Moreover, once integrated into an anion-exchange membrane water electrolysis (AEMWE) system, Ni/NiO@Ru-NC can act as an efficient and robust bifunctional electrocatalyst to operate stably for 50 h under 500 mA cm. Theoretical calculations and experimental exploration demonstrate that the confinement of Ru single atoms and Janus Ni/NiO NPs can regulate the electron distribution with strong orbital couplings to activate the NC nanotube from sidewall to top, thus boosting overall water splitting.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.3c11705DOI Listing

Publication Analysis

Top Keywords

boosting water
8
water splitting
8
carbon nanotube
8
janus ni/nio
8
evolution reaction
8
multiscale confinement
4
confinement engineering
4
engineering boosting
4
splitting one-step
4
one-step stringing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!