Rebound of SARS-CoV-2 shedding or COVID-19 signs and symptoms has been described after treatment with nirmatrelvir/ritonavir (Paxlovid). The direct association of nirmatrelvir/ritonavir to COVID-19 rebound remains unclear because most reports are based on individual cases or nonrandomized studies. Viral RNA shedding data from two phase 2/3, randomized, double-blind, placebo-controlled clinical trials of nirmatrelvir/ritonavir (Evaluation of Protease Inhibition for COVID-19 in High-Risk Patients [EPIC-HR] and Evaluation of Protease Inhibition for COVID-19 in Standard-Risk Patients [EPIC-SR]) were analyzed to investigate the role of nirmatrelvir/ritonavir treatment in COVID-19 rebound. Rates of rebound of SARS-CoV-2 RNA shedding, identified based on an increase in nasopharyngeal viral RNA levels from day 5 (end-of-treatment) to day 10 or day 14, were similar between nirmatrelvir/ritonavir and placebo recipients. Among subjects with a virologic response through day 5, viral RNA rebound occurred in 6.4%-8.4% of nirmatrelvir/ritonavir recipients and 5.9%-6.5% of placebo recipients across EPIC-HR and the 2021/pre-Omicron and 2022/Omicron enrollment periods of EPIC-SR. Viral RNA rebound after nirmatrelvir/ritonavir treatment was not associated with COVID-19-related hospitalization or death. Data from randomized trials demonstrated that SARS-CoV-2 rebound can occur with or without antiviral treatment, supporting the Food and Drug Administration's determination of safety and efficacy of nirmatrelvir/ritonavir in eligible patients at high risk for severe COVID-19.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10754264PMC
http://dx.doi.org/10.15585/mmwr.mm7251a2DOI Listing

Publication Analysis

Top Keywords

viral rna
16
rna rebound
12
nirmatrelvir/ritonavir treatment
12
nirmatrelvir/ritonavir
9
sars-cov-2 rna
8
rebound
8
rebound nirmatrelvir/ritonavir
8
randomized double-blind
8
double-blind placebo-controlled
8
rebound sars-cov-2
8

Similar Publications

N4-acetylcytidine (ac4C) modification is a crucial RNA modification widely present in eukaryotic RNA. Previous studies have demonstrated that ac4C plays a pivotal role in viral infections. Despite numerous studies highlighting the strong correlation between ac4C modification and cancer progression, its detailed roles and molecular mechanisms in normal physiological processes and cancer progression remain incompletely understood.

View Article and Find Full Text PDF

, the most common non-viral sexually transmitted parasite, causes more than 270 million infections annually. The infection's outcome varies greatly depending on different factors that include variation in human immune responses, the vaginal microbiome, and the inherent virulence of the strain. Although the pathogenicity of the different strains depends, at least partially, on differential gene expression of virulence genes; the regulatory mechanisms governing this transcriptional control remain incompletely understood.

View Article and Find Full Text PDF

Unlabelled: Eastern equine encephalitis virus (EEEV) is an arthropod-borne, positive-sense RNA alphavirus posing a substantial threat to public health. Unlike similar viruses such as SARS-CoV-2, EEEV replicates efficiently in neurons, producing progeny viral particles as soon as 3-4 hours post-infection. EEEV infection, which can cause severe encephalitis with a human mortality rate surpassing 30%, has no licensed, targeted therapies, leaving patients to rely on supportive care.

View Article and Find Full Text PDF

2'- -ribose methylation of the first transcribed base (adenine or A in SARS-CoV-2) of viral RNA mimics the host RNAs and subverts the innate immune response. How nsp16, with its obligate partner nsp10, assembles on the 5'-end of SARS-CoV-2 mRNA to methylate the A has not been fully understood. We present a ∼ 2.

View Article and Find Full Text PDF

"Active" reservoir cells transcribing HIV can perpetuate chronic inflammation in virally suppressed people with HIV (PWH) and likely contribute to viral rebound after antiretroviral therapy (ART) interruption, so they represent an important target for new therapies. These cells, however, are difficult to study using single-cell RNA-seq (scRNA-seq) due to their low frequency and low levels of HIV transcripts, which are usually not polyadenylated. Here, we developed "HIV-seq" to enable more efficient capture of HIV transcripts - including non-polyadenylated ones - for scRNA-seq analysis of cells from PWH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!