Purpose: Prior studies indicate that the physiologic response to stress can affect gene expression. We evaluated differential gene expression in breast cancers collected from Black women with high versus low exposure to psychosocial stressors.
Methods: We analyzed tumor RNA sequencing data from 417 Black Women's Health Study breast cancer cases with data on early life trauma and neighborhood disadvantage. We conducted age-adjusted differential gene expression analyses and pathway analyses. We also evaluated Conserved Transcriptional Response to Adversity (CTRA) contrast scores, relative fractions of immune cell types, T cell exhaustion, and adrenergic signaling. Analyses were run separately for estrogen receptor positive (ER+; n = 299) and ER- (n = 118) cases.
Results: Among ER+ cases, the top differentially expressed pathways by stress exposure were related to RNA and protein metabolism. Among ER- cases, they were related to developmental biology, signal transduction, metabolism, and the immune system. Targeted analyses indicated greater immune pathway enrichment with stress exposure for ER- cases, and possible relevance of adrenergic signaling for ER+ cases. CTRA contrast scores did not differ by stress exposure, but in analyses of the CTRA components, ER- breast cancer cases with high neighborhood disadvantage had higher pro-inflammatory gene expression (p = 0.039) and higher antibody gene expression (p = 0.006) compared to those with low neighborhood disadvantage.
Conclusion: There are multiple pathways through which psychosocial stress exposure may influence breast tumor biology. Given the present findings on inflammation and immune response in ER- tumors, further research to identify stress-induced changes in the etiology and progression of ER- breast cancer is warranted.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232497 | PMC |
http://dx.doi.org/10.1007/s10549-023-07182-w | DOI Listing |
Sci Rep
December 2024
Department of Biology, University of South Dakota, 414 East Clark Street, Vermillion, SD, 57069-2390, USA.
Psychological distress, including anxiety or mood disorders, emanates from the onset of chronic/unpredictable stressful events. Symptoms in the form of maladaptive behaviors are learned and difficult to treat. While the origin of stress-induced disorders seems to be where learning and stress intersect, this relationship and molecular pathways involved remain largely unresolved.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Orthopedics, The Second Affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China.
The DNA cross-link repair 1B (DCLRE1B) gene is involved in repairing cross-links between DNA strands, including those associated with Hoyeraal-Hreidarsson syndrome and congenital dyskeratosis. However, its role in tumours is not well understood. DCLRE1B expression profiles were examined in tumour tissues and normal tissues using TCGA, GTEx, and TARGET datasets.
View Article and Find Full Text PDFSci Rep
December 2024
Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, P. R. China.
Dopamine (DA) plays important roles in various behaviors, including learning and motivation. Recently, THOC5 was identified as an important regulator in the development of dopaminergic neurons. However, how THOC5 is regulated has not been explored.
View Article and Find Full Text PDFSci Rep
December 2024
School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.
Cuproptosis, a newly identified form of cell death, has drawn increasing attention for its association with various cancers, though its specific role in colorectal cancer (CRC) remains unclear. In this study, transcriptomic and clinical data from CRC patients available in the TCGA database were analyzed to investigate the impact of cuproptosis. Differentially expressed genes linked to cuproptosis were identified using Weighted Gene Co-Expression Network Analysis (WGCNA).
View Article and Find Full Text PDFNat Commun
December 2024
Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA.
Fibrolamellar Hepatocellular Carcinoma (FLC) is a rare liver cancer characterized by a fusion oncokinase of the genes DNAJB1 and PRKACA, the catalytic subunit of protein kinase A (PKA). A few FLC-like tumors have been reported showing other alterations involving PKA. To better understand FLC pathogenesis and the relationships among FLC, FLC-like, and other liver tumors, we performed a massive multi-omics analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!