Direct discharge of waste into water bodies and mining are two major sources of lead contamination in ecosystems. Water scarcity promoted the usage of industrial effluent-contaminated waters for crop production, mainly in peri-urban areas. These wastewaters may contain heavy metals and pollute crop ecosystems. These metals can reach the living cell via contaminated raw foodstuffs that grow under these conditions and cause various ill effects in metabolic activities. In this study, graded levels of pressmud (0, 2.5, 5, 10 g/kg) were applied on lead imposed soil with different contamination levels (0, 100, 150, 300 mg/kg) and metal dynamics was studied in spinach crop. Experimental results showed that the addition of pressmud upto 10 mg/kg had decreased different phytoremediation indices in spinach crop. Whereas, increasing Pb level enhanced the indices' values, indicating accumulation of significant amount of Pb in spinach biomass. However, application of pressmud (upto 10 mg/kg) reduced the bioconcentration factor (BCF) from 0.182 to 0.136, transfer factor (TF) from 0.221 to 0.191, translocation efficiency 66.11-59.34%; whereas, Pb removal enhanced from 0.063 to 0.072 over control treatment. These findings suggest that application of pressmud declined Pb concentration, the BCF and the TF in test crop which lead to less chances of adverse effect in human. These information are very useful for effectively managing wastewater irrigated agricultural crop production systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00128-023-03848-9 | DOI Listing |
Microb Cell Fact
December 2024
College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China.
17β-estradiol (E2) is an endocrine disruptor, and even trace concentrations (ng/L) of environmental estrogen can interfere with the endocrine system of organisms. Lignin holds promise in enhancing the microbial degradation E2. However, the mechanisms by which lignin facilitates this process remain unclear, which is crucial for understanding complex environmental biodegradation in nature.
View Article and Find Full Text PDFJ Fungi (Basel)
November 2024
Institute of Applied Biotechnology, College of Agronomy and Life Sciences, Shanxi Datong University, Datong 037009, China.
Native ectomycorrhizal fungi (ECMF) are generally more effective than non-native ECMF in facilitating the phytoremediation of heavy metal (HM) ions from contaminated soils. This study aimed to investigate the contributions of four ECMF species-, , , and -that were isolated from mining areas to the growth, water status, photosynthesis, and metallothionein gene expression of exposed to varying concentrations of lead (Pb). The experiment lasted two months and involved .
View Article and Find Full Text PDFInt J Phytoremediation
December 2024
Department of Ecology, Jinan University, Guangzhou, China.
Vegetated ditches have been demonstrated to be an effective method for pollutant remediation. This study assesses the removal potential and pathways for herbicide runoff pollution utilizing , , , and ditches. Resultes show these vegetated ditches significantly outperform unvegetated ones in removing atrazine and diuron during runoff events ( < 0.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China. Electronic address:
Petroleum hydrocarbon contamination, such as n-alkanes, poses a significant global threat to ecosystems and human health. Microbial remediation emerges as a promising strategy for addressing this issue through both aerobic and anaerobic processes. Notably, the majority of anaerobic hydrocarbon degraders identified to date are Gram-negative bacteria.
View Article and Find Full Text PDFInt J Phytoremediation
December 2024
Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, China.
The combined microbial-plant remediation has increasingly been used to remediate heavy metal-contaminated soil. Some microorganisms could enhance phytoremediation efficiency by solubilizing heavy metal and improve plant growth by producing phytohormones in the heavy metal contaminated soils. In the present study, a strong cesium (Cs)-tolerant fungal strain was identified from soil microorganisms contaminated with Cs, and the enrichment conditions for Cs were optimized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!