Atmospheric Humidity Underlies Irreproducibility of Formamidinium Lead Iodide Perovskites.

Adv Mater

Department of Nano Engineering and Department of Nano Science and Technology, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea.

Published: April 2024

Metal halide perovskite solar cells (PSCs) are infamous for their batch-to-batch and lab-to-lab irreproducibility in terms of stability and performance. Reproducible fabrication of PSCs is a critical requirement for market viability and practical commercialization. PSC irreproducibility plagues all levels of the community; from institutional research laboratories, start-up companies, to large established corporations. In this work, the critical function of atmospheric humidity to regulate the crystallization and stabilization of formamidinium lead triiodide (FAPbI) perovskites is unraveled. It is demonstrated that the humidity content during processing induces profound variations in perovskite stoichiometry, thermodynamic stability, and optoelectronic quality. Almost counterintuitively, it is shown that the presence of humidity is perhaps indispensable to reproduce phase-stable and efficient FAPbI-based PSCs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202307265DOI Listing

Publication Analysis

Top Keywords

atmospheric humidity
8
formamidinium lead
8
humidity underlies
4
underlies irreproducibility
4
irreproducibility formamidinium
4
lead iodide
4
iodide perovskites
4
perovskites metal
4
metal halide
4
halide perovskite
4

Similar Publications

Combined Impacts of Climate and Tree Physiology on Mercury Accumulation in Tropical and Subtropical Foliage and Robust Model Parametrization.

Environ Sci Technol

January 2025

State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.

Atmospheric elemental mercury (Hg) assimilation by foliage contributes prevalently to the global atmospheric Hg sink in forests. Today, little is known about the mechanisms of foliar Hg accumulation and how climate factors and tree physiology interact to impact it. Here, we examined meteorological factors, foliar physiological traits, and Hg accumulation rates from leaf emergence to senescence in a tropical rainforest, tropical savanna, and subtropical evergreen broadleaf forest.

View Article and Find Full Text PDF

Hole-transport layers (HTL) in perovskite solar cells (PSCs) with an n-i-p structure are commonly doped by bis(trifluoromethane)sulfonimide (TFSI) salts to enhance hole conduction. While lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) dopant is a widely used and effective dopant, it has significant limitations, including the need for additional solvents and additives, environmental sensitivity, unintended oxidation, and dopant migration, which can lead to lower stability of PSCs. A novel ionic liquid, 1-(2-methoxyethyl)-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide (MMPyTFSI), is explored as an alternative dopant for 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamino)-9,9'-spirobifluorene (spiro-OMeTAD).

View Article and Find Full Text PDF

Introduction: TWe investigated impacts of particulate matter with an aerodynamic diameter of less than 2.5 μm (PM), relative humidity (RH), and temperature on sleep stages and arousal.

Materials And Methods: A cross-sectional analysis involving 8,611 participants was conducted at a sleep center in Taipei.

View Article and Find Full Text PDF

The development of safe, environmentally friendly, edible antimicrobial packaging films represents a promising alternative to conventional plastic packaging for reducing spoilage and extending the shelf life of fresh food. Here, we propose a novel strategy to construct edible β-CD-MOF/carvacrol@zein (BCCZ) composite films by intertwining β-CD-MOF loaded with the antimicrobial essential oil carvacrol, and zein. The resulting BCCZ films exhibit high humidity-triggered, long-lasting bactericidal efficacy, effective fruit preservation, and excellent biosafety.

View Article and Find Full Text PDF

High temperature and humidity storage alter starch properties of faba (Vicia faba) and adzuki beans (Vigna angularis) associated with hard-to-cook quality.

Carbohydr Polym

March 2025

Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical & Biological Engineering, Monash University, Clayton, VIC 3800, Australia. Electronic address:

Hard-to-cook (HTC) beans are characterised by extended cooking times. Although the changes in cell walls limiting hydration in HTC beans are widely investigated, the role of macro-molecules (starch and protein, which constitute >80 % of beans) are almost overlooked. This study investigates the structural changes in starch associated with the HTC quality in faba and adzuki beans stored at contrasting temperature and humidity regimes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!