Reducing the effect of exposure to radiation in places such as radiation labs, nuclear reactors, radiotherapy facilities, industries involving radiation, etc., is essential for the health of radiation workers. In such cases materials having flexibility added with high attenuation coefficient of radiation is required for manufacturing wearables. Even though materials such as lead compounds, building materials, etc., have high attenuation coefficient, they are toxic and rigid, making them unsuitable for this purpose. In this regard, blending compounds with polymers would lead to flexible materials with high shielding capability. In the present work, 25 wt% cadmium chloride in polyvinyl alcohol (PVA) polymer composite has been prepared using solution casting method. The obtained polymer composite is characterised by energy dispersive X-ray spectroscopy. The mass attenuation coefficients (μ/ρ) and half value layer (HVL) of gamma radiations were measured at various energies 511, 661, 1173 and 1332 keV using calibrated gamma ray spectrometer with NaI(Tl) detector and compared to WinXCom-calculated theoretical values. The measured μ/ρ and HVL are 0.089, 0.078, 0.064, 0.061 cm2/g and 0.685, 0.778, 0.985, 1.003 cm, respectively. It is found that the obtained experimental values are in good agreement with theoretical values within the experimental errors. Also, it is observed that the μ/ρ decreases and HVL increases with increase in energy. Even though PVA is not radiation resistant, when it is blended with 25 wt% cadmium chloride it shows good shielding property. Thus, the fabricated cadmium chloride-PVA polymer composite can be used for radiation shielding instead of toxic and expensive materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/rpd/ncad244 | DOI Listing |
Clin Oral Investig
January 2025
Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, Zhejiang, China.
Objective: To evaluate short, mid and long-term clinical outcomes and patients' satisfaction of minimally invasive full-mouth rehabilitation using different materials and techniques for patients with moderate to severe tooth wear. Furthermore, materials were analyzed to identify their influences on clinical results.
Materials And Methods: Search was conducted in PubMed, Cochrane Central Register of Controlled Trial, Embase, Web of science and Scopus until December 19, 2024.
J Tissue Viability
January 2025
Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1414614411, Iran. Electronic address:
Scientists investigated probiotic-containing dressings to address the challenges associated with burn injuries, namely infection and antimicrobial resistance. The present investigation sought to evaluate the impact of innovative probiotic-loaded microparticles with in situ gelling characteristics on infected burns. The strain, Lactiplantibacillus plantarum, was selected due to its demonstrated wound-healing potential.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Polymers and Biopolymers, Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave., Rzeszów, 35-959, Poland.
This study presents an investigation of the chemical composition of Aloe vera leaf tissue with a focus on the spatial distribution of compounds. The composition was studied using two mass spectrometry imaging techniques: silver-109 nanoparticles assisted laser desorption/ionization mass spectrometry imaging (AgNPs-LDI-MSI) and laser ablation-remote atmospheric pressure photoionization/chemical ionization mass spectrometry imaging (LARAPPI/CI-MSI) and the identification was aided by ultra-high-performance liquid chromatography and ultra-high-resolution mass spectrometry (UHPLC-UHRMS) analysis. The results showed an abundance of phenolic compounds with antioxidant, antimicrobial, and anti-inflammatory properties, making it a beneficial food additive and food packaging material.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India.
Fiber-reinforced polymer composites are subjected to harsh environmental conditions over the course of their designed lifespan. Studying the aging process of fiber-reinforced polymer composites exposed to boiling water is critical for improving their durability. This study uses a hand lay-up technique to fabricate composites from glass fiber, bamboo fiber, nanoclay, and epoxy.
View Article and Find Full Text PDFSci Rep
January 2025
Department of General Dentistry, Medical University of Lodz, 251 Pomorska Str, Lodz, 92-213, Poland.
This study aimed at assessing the mechanical properties and degradation of commercial bioactive materials. The bioactive materials (Activa Bioactive Restorative, Beautifil Flow Plus F00, F03, Predicta Bulk Bioactive) and composite resin Filtek Supreme Flow were submitted to flexural and diametral tensile strength tests (FS, DTS), modulus of elasticity (ME) evaluation, and analysis of aging in 70% ethanol and saliva on their hardness and sorption. The results for DTS ranged from 33.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!