Mixed-Dimensional Partial Dealloyed PtCuBi/C as High-Performance Electrocatalysts for Methanol Oxidation with Enhanced CO Tolerance.

Small

Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, P. R. China.

Published: May 2024

AI Article Synopsis

Article Abstract

Developing efficient electrocatalysts for methanol oxidation reaction (MOR) is crucial in advancing the commercialization of direct methanol fuel cells (DMFCs). Herein, carbon-supported 0D/2D PtCuBi/C (0D/2D PtCuBi/C) catalysts are fabricated through a solvothermal method, followed by a partial electrochemical dealloying process to form a novel mixed-dimensional electrochemically dealloyed PtCuBi/C (0D/2D D-PtCuBi/C) catalysts. Benefiting from distinctive mixed-dimensional structure and composition, the as-obtained 0D/2D D-PtCuBi/C catalysts possess abundant accessible active sites. The introduction of Cu as a water-activating element weakens the CO, and oxophilic metal Bi facilitates the OH, thereby enhancing its tolerance to CO poisoning and promoting MOR activity. The X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure spectroscopy (XAFS) collectively reveal the electron transfer from Cu and Bi to Pt, the electron-enrichment effect induced by dealloying, and the strong interactions among Pt-M (Cu, Pt, and Bi) multi-active sites, which improve the tuning of the electronic structure and enhancement of electron transfer ability. Impressively, the optimized 0D/2D D-PtCuBi/C catalysts exhibit the superior mass activity (MA) of 17.68 A mg for MOR, which is 14.86 times higher than that of commercial Pt/C. This study offers a proposed strategy for Pt-based alloy catalysts, enabling their use as efficient anodic materials in fuel cell applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202309226DOI Listing

Publication Analysis

Top Keywords

0d/2d d-ptcubi/c
12
d-ptcubi/c catalysts
12
dealloyed ptcubi/c
8
electrocatalysts methanol
8
methanol oxidation
8
0d/2d ptcubi/c
8
ptcubi/c 0d/2d
8
electron transfer
8
0d/2d
5
catalysts
5

Similar Publications

Mixed-Dimensional Partial Dealloyed PtCuBi/C as High-Performance Electrocatalysts for Methanol Oxidation with Enhanced CO Tolerance.

Small

May 2024

Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, P. R. China.

Developing efficient electrocatalysts for methanol oxidation reaction (MOR) is crucial in advancing the commercialization of direct methanol fuel cells (DMFCs). Herein, carbon-supported 0D/2D PtCuBi/C (0D/2D PtCuBi/C) catalysts are fabricated through a solvothermal method, followed by a partial electrochemical dealloying process to form a novel mixed-dimensional electrochemically dealloyed PtCuBi/C (0D/2D D-PtCuBi/C) catalysts. Benefiting from distinctive mixed-dimensional structure and composition, the as-obtained 0D/2D D-PtCuBi/C catalysts possess abundant accessible active sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!