A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of age on metabolomic changes in a model of paclitaxel-induced peripheral neurotoxicity. | LitMetric

Background And Aims: Chemotherapy-induced peripheral neurotoxicity (CIPN) is one of the most common dose-limiting side effects of paclitaxel (PTX) treatment. Many age-related changes have been hypothesized to underlie susceptibility to damage or impaired regeneration/repair after nerve injury. The results of these studies, however, are inconclusive and other potential biomarkers of nerve impairment need to be investigated.

Methods: Twenty-four young (2 months) and 24 adult (9 months) Wistar male rats were randomized to either PTX treatment (10 mg/kg i.v. once/week for 4 weeks) or vehicle administration. Neurophysiological and behavioral tests were performed at baseline, after 4 weeks of treatment and 2-week follow-up. Skin biopsies and nerve specimens collected from sacrificed animals were examined for intraepidermal nerve fiber (IENF) density assessment and nerve morphology/morphometry. Blood and liver samples were collected for targeted metabolomics analysis.

Results: At the end of treatment, the neurophysiological studies revealed a reduction in sensory nerve action potential amplitude (p < .05) in the caudal nerve of young PTX-animals, and in both the digital and caudal nerve of adult PTX-animals (p < .05). A significant decrease in the mechanical threshold was observed only in young PTX-animals (p < .001), but not in adult PTX-ones. Nevertheless, both young and adult PTX-rats had reduced IENF density (p < .0001), which persisted at the end of follow-up period. Targeted metabolomics analysis showed significant differences in the plasma metabolite profiles between PTX-animals developing peripheral neuropathy and age-matched controls, with triglycerides, diglycerides, acylcarnitines, carnosine, long chain ceramides, sphingolipids, and bile acids playing a major role in the response to PTX administration.

Interpretation: Our study identifies for the first time multiple related metabolic axes involved in PTX-induced peripheral neurotoxicity, and suggests age-related differences in CIPN manifestations and in the metabolic profile.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jns.12609DOI Listing

Publication Analysis

Top Keywords

peripheral neurotoxicity
8
ptx treatment
8
nerve
6
age metabolomic
4
metabolomic changes
4
changes model
4
model paclitaxel-induced
4
paclitaxel-induced peripheral
4
neurotoxicity background
4
background aims
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!