Research progress on photocatalytic reduction of CO based on ferroelectric materials.

Nanoscale

College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.

Published: January 2024

Transforming CO into renewable fuels or valuable carbon compounds could be a practical means to tackle the issues of global warming and energy crisis. Photocatalytic CO reduction is more energy-efficient and environmentally friendly, and offers a broader range of potential applications than other CO conversion techniques. Ferroelectric materials, which belong to a class of materials with switchable polarization, are attractive candidates as catalysts due to their distinctive and substantial impact on surface physical and chemical characteristics. This review provides a concise overview of the fundamental principles underlying photocatalysis and the mechanism involved in CO reduction. Additionally, the composition and properties of ferroelectric materials are introduced. This review expands on the research progress in using ferroelectric materials for photocatalytic reduction of CO from three perspectives: directly as a catalyst, by modification, and construction of heterojunctions. Finally, the future potential of ferroelectric materials for photocatalytic CO reduction is presented. This review may be a valuable guide for creating reasonable and more effective photocatalysts based on ferroelectric materials.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3nr05018aDOI Listing

Publication Analysis

Top Keywords

ferroelectric materials
24
photocatalytic reduction
16
based ferroelectric
8
materials photocatalytic
8
materials
7
ferroelectric
6
reduction
5
progress photocatalytic
4
reduction based
4
materials transforming
4

Similar Publications

Stacking-Engineered Ferroelectricity and Multiferroic Order in van der Waals Magnets.

Phys Rev Lett

December 2024

John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.

Two-dimensional (2D) materials that exhibit spontaneous magnetization, polarization, or strain (referred to as ferroics) have the potential to revolutionize nanotechnology by enhancing the multifunctionality of nanoscale devices. However, multiferroic order is difficult to achieve, requiring complicated coupling between electron and spin degrees of freedom. We propose a universal method to engineer multiferroics from van der Waals magnets by taking advantage of the fact that changing the stacking between 2D layers can break inversion symmetry, resulting in ferroelectricity as well as magnetoelectric coupling.

View Article and Find Full Text PDF

Superconductivity from Domain Wall Fluctuations in Sliding Ferroelectrics.

Phys Rev Lett

December 2024

Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA.

Bilayers of two-dimensional van der Waals materials that lack an inversion center can show a novel form of ferroelectricity, where certain stacking arrangements of the two layers lead to an interlayer polarization. Under an external out-of-plane electric field, a relative sliding between the two layers can occur, accompanied by an interlayer charge transfer and a ferroelectric switching. We show that the domain walls that mediate ferroelectric switching are a locus of strong attractive interactions between electrons.

View Article and Find Full Text PDF

Recently, the emergence of two-dimensional (2D) multiferroic materials has opened a new perspective for exploring topological states. However, instances of tuning topological phase transitions through ferroelectric (FE) polarization in 2D ferromagnetic (FM) materials are relatively rare. Here, we found that 11 single layer (SL) materials, named the MMGeX family, possess both FE and FM properties.

View Article and Find Full Text PDF

Hardware implementation of reconfigurable and nonvolatile photoresponsivity is essential for advancing in-sensor computing for machine vision applications. However, existing reconfigurable photoresponsivity essentially depends on the photovoltaic effect of p-n junctions, which photoelectric efficiency is constrained by Shockley-Queisser limit and hinders the achievement of high-performance nonvolatile photoresponsivity. Here, we employ bulk photovoltaic effect of rhombohedral (3R) stacked/interlayer sliding tungsten disulfide (WS) to surpass this limit and realize highly reconfigurable, nonvolatile photoresponsivity with a retinomorphic photovoltaic device.

View Article and Find Full Text PDF

Global-optimized energy storage performance in multilayer ferroelectric ceramic capacitors.

Nat Commun

January 2025

Electronic Materials Research Laboratory & Multifunctional Materials and Structures, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China.

Multilayer ceramic capacitor as a vital core-component for various applications is always in the spotlight. Next-generation electrical and electronic systems elaborate further requirements of multilayer ceramic capacitors in terms of higher energy storage capabilities, better stabilities, environmental-friendly lead-free, etc., where these major obstacles may restrict each other.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!