Half-sandwich Ni(II) complexes bearing enantiopure bidentate NHC-carboxylate ligands: efficient catalysts for the hydrosilylative reduction of acetophenones.

Dalton Trans

Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río", Universidad de Alcalá, Campus Universitario, 28871 Alcalá de Henares, Madrid, Spain.

Published: January 2024

Chiral nickel complexes containing NHC-carboxylate chelate ligands derived from the ()-isomeric form of amino acids have been synthesised from the corresponding imidazolium salt and nickelocene. The presence of the carboxylate on the -side arm of the heterocycle results in the competing formation of mixtures of mono- and bis-NHC complexes (, [Ni(η-Cp)(κ-,-NHC)] and [Ni(κ-,-NHC)]), both of which retain the ()-configuration of the stereogenic center and which can be separated by chromatography. Both the 18e and 16e complexes are found to be very stable and cannot be interconverted. The composition of the resulting mixtures depends mainly on the entity of the amino acid residue and, of more practical interest, on the reaction conditions. Thus, microwave heating and MeCN as a solvent favor the formation of the half-sandwich nickel complexes, rather than the bis-NHC compounds. Some of the [Ni(η-Cp)(κ-,-NHC)] complexes turn out to be among the best nickel catalysts for the hydrosilylative reduction of -acetophenones described to date, although without chiral induction, in the absence of activating additives and under mild catalytic conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3dt03739hDOI Listing

Publication Analysis

Top Keywords

catalysts hydrosilylative
8
hydrosilylative reduction
8
nickel complexes
8
complexes
6
half-sandwich niii
4
niii complexes
4
complexes bearing
4
bearing enantiopure
4
enantiopure bidentate
4
bidentate nhc-carboxylate
4

Similar Publications

Catalytic Asymmetric Dehydrogenative Si-H/X-H Coupling toward Si-Stereogenic Silanes.

Acc Chem Res

January 2025

Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.

ConspectusChiral organosilicon compounds bearing a Si-stereogenic center have attracted increasing attention in various scientific communities and appear to be a topic of high current relevance in modern organic chemistry, given their versatile utility as chiral building blocks, chiral reagents, chiral auxiliaries, and chiral catalysts. Historically, access to these non-natural Si-stereogenic silanes mainly relies on resolution, whereas their asymmetric synthetic methods dramatically lagged compared to their carbon counterparts. Over the past two decades, transition-metal-catalyzed desymmetrization of prochiral organosilanes has emerged as an effective tool for the synthesis of enantioenriched Si-stereogenic silanes.

View Article and Find Full Text PDF

The 18e saturated rhodium(III) species [Rh(H)(X)(κ2-NSitBu2)(bipyMe2)] (NSitBu2 = {4-methylpyridine-2-yloxy}ditertbutylsilyl; bipyMe2 = 4,4´-dimethylbipyridine) (X = Cl, 1; OTf, 2) have been prepared and characterized by NMR spectroscopy and in the case of 2 it has been possible to determine its solid-state structure by X-ray diffraction. Complex 1 has proven to be an effective catalyst precursor for the reaction of styrene derivatives with hydrosilanes in CD2Cl2. However, under catalytic conditions complex 2 decomposes.

View Article and Find Full Text PDF

We synthesized ,-dimethylformamide (DMF)-stabilized manganese nanoparticles (Mn NPs) in a one-step process under air using manganese(ii) chloride as the precursor. The Mn NPs were characterized in terms of particle size, oxidation state, and local structure using annular dark-field scanning transmission electron microscopy (ADF-STEM), X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy (XAS). The results indicate that Mn NPs are divalent nanosized particles with Mn-O bonds.

View Article and Find Full Text PDF

Zirconium(IV)-Catalysed Hydrosilylation of Organic Carbonates and Polycarbonates Household Wastes into Alcohol Derivatives.

Chemistry

January 2025

Centre CEA Paris-Saclay: Commissariat a l'Energie Atomique et aux Energies Alternatives Centre de Saclay, IRAMIS Institute, CEA - Saclay, 91190, Gif-Sur-Yvette, FRANCE.

The Schwartz's reagent Cp2Zr(H)Cl is a well known stoichiometric reagent for the reduction of unsaturated organic molecules but it has rarely been used in catalytic transformations. Herein, we describe the reduction of a variety of organic carbonates using the catalyst Cp2Zr(H)Cl in combination with Me(MeO)2SiH (DMMS) as reductant. This method was further applied to the reductive depolymerization of some polycarbonate materials and yielded silylated alcohols and diols in mild conditions.

View Article and Find Full Text PDF

Silylformates are emerging surrogates of hydrosilanes, able to reduce carbonyl groups in transfer hydrosilylation reactions, with the concomitant release of CO2. In this work, a new reactivity is revealed for silylformates, in the presence of imines. Using ruthenium catalysts, and lithium iodide as a co-catalyst, imines are shown to undergo hydrocarboxysilylation by formal insertion of CO2 to the N-Si bond of silyl amine to yield silyl carbamates in excellent yields.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!