Neurodegenerative disorders pose a significant challenge to global healthcare, with Alzheimer's disease (AD) being one of the most prevalent forms. Early and accurate detection of amyloid-β (Aβ) (1-42) monomers, a key biomarker of AD pathology, is crucial for effective diagnosis and intervention of the disease. Current gold standard detection techniques for Aβ include enzyme-linked immunosorbent assay and surface plasmon resonance. Although reliable, they are limited by their cost and time-consuming nature, thus restricting their point-of-care applicability. Here we present a sensitive and rapid colorimetric sensor for the detection of Aβ (1-42) monomers within 5 min. This was achieved by harnessing the peroxidase-like activity of metal-loaded metal-organic frameworks (MOFs), specifically UiO-66-NH, coupled with the strong affinity of Aβ (1-42) to the MOFs. Various metal-loaded MOFs were synthesized and investigated, and platinum-loaded UiO-66-NH was identified as the optimal candidate for our purpose. The Pt-loaded UiO-66-NH sensor demonstrated detection limits of 2.76 and 4.65 nM Aβ (1-42) monomers in water and cerebrospinal fluid, respectively, with a linear range from 0.75 to 25 nM ( = 0.9712), outperforming traditional detection techniques in terms of both detection time and complexity. Moreover, the assay was specific toward Aβ (1-42) monomers when evaluated against interfering compounds. The rapid and cost-effective sensor may help circumvent the limitations of conventional detection methods, thus providing a promising avenue for early AD diagnosis and facilitating improved clinical outcomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsabm.3c00768 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!