A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A physiologically enhanced muscle spindle model: using a Hill-type model for extrafusal fibers as template for intrafusal fibers. | LitMetric

A physiologically enhanced muscle spindle model: using a Hill-type model for extrafusal fibers as template for intrafusal fibers.

Comput Methods Biomech Biomed Engin

Institute for Modeling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany.

Published: December 2023

The muscle spindle is an essential proprioceptor, significantly involved in sensing limb position and movement. Although biological spindle models exist for years, the gold-standard for motor control in biomechanics are still sensors built of homogenized spindle output models due to their simpler combination with neuro-musculoskeletal models. Aiming to improve biomechanical simulations, this work establishes a more physiological model of the muscle spindle, aligned to the advantage of easy integration into large-scale musculoskeletal models. We implemented four variations of a spindle model in Matlab/Simulink®: the Mileusnic et al. (2006) model, Mileusnic model without mass, our enhanced Hill-type model, and our enhanced Hill-type model with parallel damping element (PDE). Different stretches in the intrafusal fibers were simulated in all model variations following the spindle afferent recorded in previous experiments in feline soleus muscle. Additionally, the enhanced Hill-type models had their parameters extensively optimized to match the experimental conditions, and the resulting model was validated against data from rats' triceps surae muscle. As result, the Mileusnic models present a better overall performance generating the afferent firings compared to the common data evaluated. However, the enhanced Hill-type model with PDE exhibits a more stable performance than the original Mileusnic model, at the same time that presents a well-tuned Hill-type model as muscle spindle fibers, and also accounts for real sarcomere force-length and force-velocity aspects. Finally, our activation dynamics is similar to the one applied to Hill-type model for extrafusal fibers, making our proposed model more easily integrated in multi-body simulations.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10255842.2023.2293652DOI Listing

Publication Analysis

Top Keywords

hill-type model
24
muscle spindle
16
enhanced hill-type
16
model
15
spindle
8
spindle model
8
model extrafusal
8
extrafusal fibers
8
intrafusal fibers
8
model muscle
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!