MicroRNA-1 Deficiency Is a Primary Etiological Factor Disrupting Cardiac Contractility and Electrophysiological Homeostasis.

Circ Arrhythm Electrophysiol

The Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, Frick Center for Heart Failure and Arrhythmia (D.Y., X.W., O.C., E.K., P.J.M., I.D., J.-D.F.), The Ohio State University, Columbus, OH.

Published: January 2024

Background: MicroRNA-1 (miR1), encoded by the genes and , is the most abundant microRNA in the heart and plays a critical role in heart development and physiology. Dysregulation of miR1 has been associated with various heart diseases, where a significant reduction (>75%) in miR1 expression has been observed in patient hearts with atrial fibrillation or acute myocardial infarction. However, it remains uncertain whether miR1-deficiency acts as a primary etiological factor of cardiac remodeling.

Methods: or knockout mice were crossbred to produce 75%-miR1-knockdown (75%KD; or ) mice. Cardiac pathology of 75%KD cardiomyocytes/hearts was investigated by ECG, patch clamping, optical mapping, transcriptomic, and proteomic assays.

Results: In adult 75%KD hearts, the overall miR1 expression was reduced to ≈25% of the normal wild-type level. These adult 75%KD hearts displayed decreased ejection fraction and fractional shortening, prolonged QRS and QT intervals, and high susceptibility to arrhythmias. Adult 75%KD cardiomyocytes exhibited prolonged action potentials with impaired repolarization and excitation-contraction coupling. Comparatively, 75%KD cardiomyocytes showcased reduced Na current and transient outward potassium current, coupled with elevated L-type Ca current, as opposed to wild-type cells. RNA sequencing and proteomics assays indicated negative regulation of cardiac muscle contraction and ion channel activities, along with a positive enrichment of smooth muscle contraction genes in 75%KD cardiomyocytes/hearts. miR1 deficiency led to dysregulation of a wide gene network, with miR1's RNA interference-direct targets influencing many indirectly regulated genes. Furthermore, after 6 weeks of bi-weekly intravenous tail-vein injection of miR1 mimics, the ejection fraction and fractional shortening of 75%KD hearts showed significant improvement but remained susceptible to arrhythmias.

Conclusions: miR1 deficiency acts as a primary etiological factor in inducing cardiac remodeling via disrupting heart regulatory homeostasis. Achieving stable and appropriate microRNA expression levels in the heart is critical for effective microRNA-based therapy in cardiovascular diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10842700PMC
http://dx.doi.org/10.1161/CIRCEP.123.012150DOI Listing

Publication Analysis

Top Keywords

primary etiological
12
etiological factor
12
adult 75%kd
12
75%kd hearts
12
mir1 expression
8
acts primary
8
75%kd
8
75%kd cardiomyocytes/hearts
8
ejection fraction
8
fraction fractional
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!