The panzootic potential of SARS-CoV-2.

Bioscience

One Health Center of Excellence, University of Florida, Gainesville, Florida, United States.

Published: November 2023

Each year, SARS-CoV-2 is infecting an increasingly unprecedented number of species. In the present article, we combine mammalian phylogeny with the genetic characteristics of isolates found in mammals to elaborate on the host-range potential of SARS-CoV-2. Infections in nonhuman mammals mirror those of contemporary viral strains circulating in humans, although, in certain species, extensive viral circulation has led to unique genetic signatures. As in other recent studies, we found that the conservation of the ACE2 receptor cannot be considered the sole major determinant of susceptibility. However, we are able to identify major clades and families as candidates for increased surveillance. On the basis of our findings, we argue that the use of the term could be a more appropriate term than pandemic to describe the ongoing scenario. This term better captures the magnitude of the SARS-CoV-2 host range and would hopefully inspire inclusive policy actions, including systematic screenings, that could better support the management of this worldwide event.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10728779PMC
http://dx.doi.org/10.1093/biosci/biad102DOI Listing

Publication Analysis

Top Keywords

potential sars-cov-2
8
panzootic potential
4
sars-cov-2
4
sars-cov-2 year
4
year sars-cov-2
4
sars-cov-2 infecting
4
infecting increasingly
4
increasingly unprecedented
4
unprecedented number
4
number species
4

Similar Publications

Background: Virtual follow-up (VFU) has the potential to enhance cancer survivorship care. However, a greater understanding is needed of how VFU can be optimized.

Objective: This study aims to examine how, for whom, and in what contexts VFU works for cancer survivorship care.

View Article and Find Full Text PDF

SARS-CoV-2 has continued spreading around the world in recent years since the initial outbreak in 2019, frequently developing into new variants with greater human infectious capacity. SARS-CoV-2 and its mutants use the angiotensin-converting enzyme 2 (ACE2) as a cellular entry receptor, which has triggered several therapeutic strategies against COVID-19 relying on the use of ACE2 recombinant proteins as decoy receptors. In this work, we propose an ACE2 silent Fc fusion protein (ACE2-hFcLALA) as a candidate therapy against COVID-19.

View Article and Find Full Text PDF

The omicron variant of SARS-CoV-2 drove broadly increased seroprevalence in a public university setting.

PLOS Glob Public Health

January 2025

Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America.

Omicron is the comparatively most transmissible and contagious variant of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). We conducted a seroprevalence study from March 1-3, 2022, to investigate the seroprevalence of SARS-CoV-2 antibodies among individuals aged 18 years and older after the Omicron outbreak. The seroprevalence of anti-receptor binding domain (RBD) antibodies was found to be 96.

View Article and Find Full Text PDF

In this study, we analyzed the potential associations of selected laboratory and anamnestic parameters, as well as 12 genetic polymorphisms (SNPs), with clinical COVID-19 occurrence and severity in 869 hospitalized patients. The SNPs analyzed by qPCR were selected based on population-wide genetic (GWAS) data previously indicating association with the severity of COVID-19, and additional SNPs that have been shown to be important in cellular processes were also examined. We confirmed the associations of COVID-19 with pre-existing diabetes and found an unexpected association between less severe disease and the loss of smell and taste.

View Article and Find Full Text PDF

Background: The increased vulnerability of Alzheimer's disease patients to severe SARS-CoV-2 infection raises crucial concerns, especially with the potential transition of the COVID-19 pandemic to an endemic state. Given the rising prevalence of Alzheimer's in an aging world-wide population, elucidating whether SARS-CoV-2 infection may induce or accelerate neurodegeneration becomes imperative.

Method: To investigate the neurodegenerative effects of SARS-CoV-2 infection, we generated brain organoids using human induced pluripotent stem lines from one non-demented control, one with sporadic Alzheimer's, and one with familial Alzheimer's.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!