The present study investigated the therapeutic potential of breviscapine (Bre) in mitigating lead (Pb)-induced myocardial injury through activation of the nuclear factor erythroid-2 related factor 2 (Nrf2) pathway. Rat cardiomyocytes (H9C2 cells) were exposed to Pb to model Pb poisoning, and various parameters, including cell viability, apoptosis and reactive oxygen species (ROS) production, were assessed using Cell Counting Kit-8, flow cytometry and 2',7'-dichlorfluoresceindiacetate assays, respectively. Additionally, a rat model of Pb poisoning was established in which blood Pb levels were measured using a graphite furnace atomic absorption spectrophotometer, and alterations in myocardial tissue, oxidative stress markers, inflammatory indicators, protein expression related to apoptosis and the Nrf2 pathway were evaluated via histopathology, ELISA and western blotting. The results showed that Bre treatment enhanced cell viability, decreased apoptosis, and reduced ROS production in Pb-exposed H9C2 cells. Moreover, Bre modulated oxidative stress markers and inflammatory factors while enhancing the expression of proteins in the Nrf2 pathway. In a rat model, Bre mitigated the lead-induced increase in blood Pb levels and myocardial injury biomarkers, and reversed the downregulation of Nrf2 pathway proteins. In conclusion, the current findings suggested that Bre mitigates Pb-induced myocardial injury by activating the Nrf2 signaling pathway, highlighting its potential as a therapeutic agent for protecting the heart from the harmful effects of Pb exposure. Further research is required to elucidate the exact mechanisms and explore the clinical applicability of Bre in mitigating Pb-induced myocardial damage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10728892PMC
http://dx.doi.org/10.3892/etm.2023.12314DOI Listing

Publication Analysis

Top Keywords

myocardial injury
16
nrf2 pathway
16
pb-induced myocardial
12
injury activating
8
activating nrf2
8
nrf2 signaling
8
signaling pathway
8
bre mitigating
8
pathway rat
8
h9c2 cells
8

Similar Publications

TRADD-mediated pyroptosis contributes to diabetic cardiomyopathy.

Acta Pharmacol Sin

January 2025

Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, China.

Regulated cell death like pyroptosis is one vital cause of diabetic cardiomyopathy (DCM), which eventually leads to heart failure. Tumor necrosis factor (TNF) receptor-associated death domain protein (TRADD) is an adapter protein with multiple functions that participates in the pathophysiological progress of different cardiovascular disorders via regulating regulated cell death. Studies have shown that TRADD combines with receptor-interacting protein kinase 3 (RIPK3) and facilitates its activation, thereby mediating TNF-induced necroptosis.

View Article and Find Full Text PDF

SNX3 mediates heart failure by interacting with HMGB1 and subsequently facilitating its nuclear-cytoplasmic translocation.

Acta Pharmacol Sin

January 2025

National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.

Sorting nexins (SNXs) as the key regulators of sorting cargo proteins are involved in diverse diseases. SNXs can form the specific reverse vesicle transport complex (SNXs-retromer) with vacuolar protein sortings (VPSs) to sort and modulate recovery and degradation of cargo proteins. Our previous study has shown that SNX3-retromer promotes both STAT3 activation and nuclear translocation in cardiomyocytes, suggesting that SNX3 might be a critical regulator in the heart.

View Article and Find Full Text PDF

Background: Optimised use of kidney function information might improve cardiac risk prediction in noncardiac surgery.

Methods: In 35,815 patients from the VISION cohort study and 9219 patients from the POISE-2 trial who were ≥45 yr old and underwent nonurgent inpatient noncardiac surgery, we examined (by age and sex) the association between continuous nonlinear preoperative estimated glomerular filtration rate (eGFR) and the composite of myocardial injury after noncardiac surgery, nonfatal cardiac arrest, or death owing to a cardiac cause within 30 days after surgery. We estimated contributions of predictive information, C-statistic, and net benefit from eGFR and other common patient and surgical characteristics to large multivariable models.

View Article and Find Full Text PDF

Dihydrotanshinone I (DHT) is an active ingredient derived from Salvia miltiorrhiza. Previous studies have demonstrated that DHT can improve cardiac function in rats with myocardial ischemia-reperfusion injury (IR). However, the mechanism by which DHT improves myocardial injury in rats still requires further research.

View Article and Find Full Text PDF

Background: It is crucial to distinguish type-1 myocardial infarction (T1MI) from type-2 myocardial infarction (T2MI) at admission and during hospitalization to avoid unnecessary invasive exams and inappropriate admissions to the acute cardiac care unit.

Objectives: The purpose of the study was to define a simple profile derived from commonly used biomarkers to differentiate T1MI from T2MI.

Methods: We prospectively enrolled in an observational study 213 iconsecutive patients with a provisional diagnosis of non-ST-elevation acute myocardial infarction (NSTEMI) admitted to the Cardiology Department.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!