The absence of a conducive bone formation microenvironment between fractured ends poses a significant challenge in repairing large bone defects. A promising solution is to construct a bone formation microenvironment that mimics natural bone tissue. Biomimetic mineralized collagen possesses a chemical composition and microstructure highly similar to the natural bone matrix, making it an ideal biomimetic bone substitute material. The microstructure of biomimetic mineralized collagen is influenced by various factors, and its biomineralization and microstructure, in turn, affect its physicochemical properties and biological activity. We aimed to utilize mineralization time and solution concentration as variables and employed the polymer-induced liquid precursor strategy to fabricate mineralized collagen with diverse microstructures, to shed light on how mineralization parameters impact the material microstructure and physicochemical properties. We also investigated the influence of microstructure and physicochemical properties on cell biocompatibility and the bone-forming microenvironment. Through comprehensive characterization, we examined the physical and chemical properties of I-EMC under various mineralization conditions and assessed the and biocompatibility and osteogenic performance. By investigating the relationship between mineralization parameters, material physicochemical properties, and osteogenic performance, we revealed how microstructures influence cellular behaviors like biocompatibility and osteogenic microenvironment. Encouragingly, mineralization solutions with varying concentrations, stabilized by polyacrylic acid, successfully produced intrafibrillar and extrafibrillar mineralized collagen. Compared to non-mineralized collagen, all mineralized samples demonstrated improved bone-forming performance. Notably, samples prepared with a 1× mineralization solution exhibited relatively smooth surfaces with even mineralization. Extending the mineralization time enhanced the degree of mineralization and osteogenic performance. Conversely, samples prepared with a 2× mineralization solution had rough surfaces with large calcium phosphate particles, indicating non-uniform mineralization. Overall, our research advances the potential for commercial production of mineralized collagen protein products, characterized by dual biomimetic properties, and their application in treating various types of bone defects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10731298PMC
http://dx.doi.org/10.3389/fbioe.2023.1267912DOI Listing

Publication Analysis

Top Keywords

mineralized collagen
24
physicochemical properties
16
mineralization time
12
biomimetic mineralized
12
osteogenic performance
12
mineralization
11
time solution
8
solution concentration
8
microstructure biomimetic
8
osteogenic microenvironment
8

Similar Publications

Dynamic-Cross-Linked, Regulated, and Controllable Mineralization Degree and Morphology of Collagen Biomineralization.

J Funct Biomater

November 2024

Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Department of Biomedical Engineering, College of Chemistry and Life Sciences, Beijing University of Technology, Beijing 100124, China.

The cross-linking process of collagen is one of the more important ways to improve the mineralization ability of collagen. However, the regulatory effect of dynamic cross-linking on biomineralization in vitro remains unclear. Dynamic-cross-linked mineralized collagen under different cross-linking processes, according to the process of cross-linking and mineralization of natural bone, was prepared in this study.

View Article and Find Full Text PDF

Objectives: Glucocorticoid cosecretion is more common in primary aldosteronism (PA) than previously thought. Chronic subtle cortisol excess in patients with mild autonomous cortisol secretion (MACS) negatively affects bone health. This study aimed to evaluate the impact of MACS on bone density and turnover markers in PA patients.

View Article and Find Full Text PDF

Objective: To determine the structure of abnormalities of bone tissue and substantiate the management tactics inacute lymphoblastic leukemia (ALL) pediatric patients and in children with no oncohematological disorders, livingin radiologically contaminated territories (RCT).

Materials And Methods: Children (n = 220) living in RCT were the study participants i.e.

View Article and Find Full Text PDF

Histological Study of Skin Structures From Selected Body Areas in the Varanus komodoensis.

J Morphol

January 2025

Department of Biostructure and Animal Physiology, Division of Histology and Embryology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland.

The skin of the Komodo dragon (Varanus komodoensis) is covered by a form of armour formed mainly of scales, which often co-occur with osteoderms. Scales are keratinized, non-mineralized structures in the uppermost layer of the epidermis that are in contact with each other to form a system in which individual scales are isolated from each other by a softer skin fold zone. In the Varanus, the surface of the scales is flat and smooth (thoracic limb, abdomen, and tail areas), domed and smooth (head area) or domed with conical ornamentation (dorsal surface, pelvic limb-dorsal surface areas).

View Article and Find Full Text PDF

Exogenous bone sialoprotein improves extraction socket healing in ibsp knockout and wild-type mice.

Bone

December 2024

Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA. Electronic address:

Bone sialoprotein (Ibsp/BSP) is a bone-associated extracellular matrix protein. Ibsp knockout (Ibsp) mice exhibit defective alveolar bone formation, mineralization, and healing. We hypothesized BSP would rescue defective alveolar bone healing in a molar extraction model in Ibsp mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!