Introduction: The large family of PE and PPE proteins accounts for as much as 10% of the genome of . In this study, we explored the immunogenicity of three proteins from this family, PE18, PE31, and PPE26, in humans and mice.

Methods: The investigation involved analyzing the immunoreactivity of the selected proteins using sera from TB patients, IGRA-positive household contacts, and IGRA-negative BCG vaccinated healthy donors from the TB endemic country Mozambique. Antigen-recall responses were examined in PBMC from these groups, including the evaluation of cellular responses in healthy unexposed individuals. Moreover, systemic priming and intranasal boosting with each protein, combined with the Quil-A adjuvant, were conducted in mice.

Results: We found that all three proteins are immunoreactive with sera from TB patients, IGRA-positive household contacts, and IGRA-negative BCG vaccinated healthy controls. Likewise, antigen-recall responses were induced in PBMC from all groups, and the proteins stimulated proliferation of peripheral blood mononuclear cells from healthy unexposed individuals. In mice, all three antigens induced IgG antibody responses in sera and predominantly IgG, rather than IgA, responses in bronchoalveolar lavage. Additionally, CD4+ and CD8+ effector memory T cell responses were observed in the spleen, with PE18 demonstrating the ability to induce tissue-resident memory T cells in the lungs.

Discussion: Having demonstrated immunogenicity in both humans and mice, the protective capacity of these antigens was evaluated by challenging immunized mice with low-dose aerosol of H37Rv. The Mycobacterial Growth Inhibition Assay (MGIA) and assessment of viable bacteria in the lung did not demonstrate any ability of the vaccination protocol to reduce bacterial growth. We therefore concluded that these three specific PE/PPE proteins, while immunogenic in both humans and mice, were unable to confer protective immunity under these conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10730732PMC
http://dx.doi.org/10.3389/fimmu.2023.1307429DOI Listing

Publication Analysis

Top Keywords

humans mice
12
pe18 pe31
8
pe31 ppe26
8
three proteins
8
sera patients
8
patients igra-positive
8
igra-positive household
8
household contacts
8
contacts igra-negative
8
igra-negative bcg
8

Similar Publications

A comparative approach on the prophylactic impact of fermented beverages on acute ulcerative colitis in mouse model.

Pol J Vet Sci

December 2024

Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, 15030, İstiklal Campus, Burdur, Turkey.

Acute ulcerative colitis is an inflammatory disease of the colon that is becoming increasingly prevalent. Yet, a growing body of evidence supports the efficacy of dietary interventions in preventing acute ulcerative colitis. Fermented beverages have been the focus of research in humans and animals for several years due to their potential to influence overall health functions with an emphasis on gut health.

View Article and Find Full Text PDF

Background: Multiple sclerosis (MS) is a demyelinating, neuroinflammatory, progressive disease that severely affects human health of young adults. Neuroinflammation (NI) and demyelination, as well as their interactions, are key therapeutic targets to halt or slow disease progression. Potent steroidal anti-inflammatory drugs such as methylprednisolone (MP) and remyelinating neurosteroids such as allopregnanolone (ALLO) could be co-administered intranasally to enhance their efficacy by providing direct access to the central nervous system (CNS).

View Article and Find Full Text PDF

Background: Psoriasis is a chronic and incurable skin inflammation driven by an abnormal immune response. Our study aims to investigate the potential of interferon-γ (IFN-γ) primed mesenchymal stem cells (IMSCs) in targeting T cells to attenuate psoriasis-like inflammation, and to elucidate the underlying molecular mechanism involved.

Methods: Mesenchymal stem cells (MSCs) were isolated from the umbilical cord and identified based on their surface markers.

View Article and Find Full Text PDF

Excess Ub-K48 Induces Neuronal Apoptosis in Alzheimer's Disease.

J Integr Neurosci

December 2024

Department of Human Anatomy, School of Basic Medical Sciences, Wannan Medical College, 241002 Wuhu, Anhui, China.

Background: K48-linked ubiquitin chain (Ub-K48) is a crucial ubiquitin chain implicated in protein degradation within the ubiquitin-proteasome system. However, the precise function and molecular mechanism underlying the role of Ub-K48 in the pathogenesis of Alzheimer's disease (AD) and neuronal cell abnormalities remain unclear. The objective of this study was to examine the function of K48 ubiquitination in the etiology of AD, and its associated mechanism of neuronal apoptosis.

View Article and Find Full Text PDF

Background: The interplay of OGG1, 8-Oxoguanine, and oxidative stress triggers the exaggerated release of cytokines during malaria, which worsens the outcome of the disease. We aimed to investigate the involvement of OGG1 in malaria and assess the effect of modulating its activity on the cytokine environment and anemia during malaria in mice.

Methods: infection in ICR mice was used as a malaria model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!