Transformer encoder with multiscale deep learning for pain classification using physiological signals.

Front Physiol

Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, United States.

Published: December 2023

AI Article Synopsis

  • Pain is a major global health issue that impacts many people, but accurately measuring pain through traditional self-reporting methods is often inconsistent and biased.
  • Our study presents PainAttnNet, a new deep-learning model aimed at improving pain intensity classification by analyzing physiological signals more effectively.
  • The model incorporates advanced techniques like multiscale convolutional networks and transformer blocks, demonstrating superior performance in analyzing pain data compared to existing models, paving the way for more accurate and personalized pain assessment and management.

Article Abstract

Pain, a pervasive global health concern, affects a large segment of population worldwide. Accurate pain assessment remains a challenge due to the limitations of conventional self-report scales, which often yield inconsistent results and are susceptible to bias. Recognizing this gap, our study introduces PainAttnNet, a novel deep-learning model designed for precise pain intensity classification using physiological signals. We investigate whether PainAttnNet would outperform existing models in capturing temporal dependencies. The model integrates multiscale convolutional networks, squeeze-and-excitation residual networks, and a transformer encoder block. This integration is pivotal for extracting robust features across multiple time windows, emphasizing feature interdependencies, and enhancing temporal dependency analysis. Evaluation of PainAttnNet on the BioVid heat pain dataset confirm the model's superior performance over the existing models. The results establish PainAttnNet as a promising tool for automating and refining pain assessments. Our research not only introduces a novel computational approach but also sets the stage for more individualized and accurate pain assessment and management in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10730685PMC
http://dx.doi.org/10.3389/fphys.2023.1294577DOI Listing

Publication Analysis

Top Keywords

transformer encoder
8
classification physiological
8
physiological signals
8
accurate pain
8
pain assessment
8
existing models
8
pain
7
encoder multiscale
4
multiscale deep
4
deep learning
4

Similar Publications

Event-based surveillance is crucial for the early detection and rapid response to potential public health risks. In recent years, social networking services (SNS) have been recognized for their potential role in this domain. Previous studies have demonstrated the capacity of SNS posts for the early detection of health crises and affected individuals, including those related to infectious diseases.

View Article and Find Full Text PDF

PFSH-Net: Parallel frequency-spatial hybrid network for segmentation of kidney stones in pre-contrast computed tomography images of dogs.

Comput Biol Med

January 2025

Division of Electronics and Information Engineering, College of Engineering, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, 54896, Jeonju, Republic of Korea. Electronic address:

Kidney stone is a common urological disease in dogs and can lead to serious complications such as pyelonephritis and kidney failure. However, manual diagnosis involves a lot of burdens on radiologists and may cause human errors due to fatigue. Automated methods using deep learning models have been explored to overcome this limitation.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Alzheimer's Disease Neuroimaging Initiative, http://adni.loni.usc.edu/, CA, USA.

Background: Assessing tau accumulation in early affected areas like the lateral entorhinal cortex (EC) and inferior temporal gyrus (ITG) enables early prediction of disease progression and cognitive decline. However, positron emission tomography (PET) imaging poses radiation exposure and cost concerns. This research aims to develop a deep learning model predicting tau positivity in these regions using MRI.

View Article and Find Full Text PDF

Clinical Manifestations.

Alzheimers Dement

December 2024

Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

Background: This study responds to the urgent need for automated and reliable methods to detect cognitive impairments on a large scale. It leverages natural language processing (NLP) techniques to predict dementia and mild cognitive impairment (MCI) using clinical notes from electronic health records (EHR).

Method: Our study used an EHR dataset from Massachusetts General Brigham, which included clinical notes from a 2-year period (2017-2018) covering 12 types of patient encounters.

View Article and Find Full Text PDF

Background: Up to 13% of adolescents suffer from depressive disorders. Despite the high psychological burden, adolescents rarely decide to contact child and adolescent psychiatric services. To provide a low-barrier alternative, our long-term goal is to develop a chatbot for early identification of depressive symptoms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!