Spatial gene expression in the adult rat patellar tendon.

Matrix Biol Plus

Department of Neurobiology, Physiology & Behavior, University of California Davis, Davis, CA, United States.

Published: December 2023

Tendons are dense connective tissues with relatively few cells which makes studying the molecular profile of the tissue challenging. There is not a consensus on the spatial location of various cell types within a tendon, nor the accompanying transcriptional profile. In the present study, we used two male rat patellar tendon samples for sequencing-based spatial transcriptomics to determine the gene expression profile. We integrated our data with a mouse Achilles single cell dataset to predict the cell type composition of the patellar tendon as a function of location within the tissue. The spatial location of the predicated cell types suggested that there were two populations of tendon fibroblasts, one located in the tendon midsubstance, while the other localized with red blood cells, pericytes, and immune cells to the tendon peripheral connective tissue. Of the highest expressed spatially variable genes, there were multiple genes with known function in tendon: Col1a1, Col1a2, Dcn, Fmod, Sparc, and Comp. Further, a novel spatially regulated gene (AABR07000398.1) with no known function was identified. The spatial gene expression of tendon associated genes (Scx, Thbs4, Tnmd, Can, Bgn, Lum, Adamts2, Lox, Ppib, Col2a1, Col3a1, Col6a2) was also visualized. Both patellar tendon samples had similar expression patterns for all these genes. This dataset provides new spatial insights into gene expression in a healthy tendon.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10731370PMC
http://dx.doi.org/10.1016/j.mbplus.2023.100138DOI Listing

Publication Analysis

Top Keywords

gene expression
16
patellar tendon
16
tendon
11
spatial gene
8
rat patellar
8
spatial location
8
cell types
8
tendon samples
8
spatial
6
expression
5

Similar Publications

TRPV4 as a Novel Regulator of Ferroptosis in Colon Adenocarcinoma: Implications for Prognosis and Therapeutic Targeting.

Dig Dis Sci

January 2025

Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.

Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.

View Article and Find Full Text PDF

Objective: Rheumatoid arthritis (RA) is an autoimmune condition that causes severe joint deformities and impaired functionality, affecting the well-being and daily life of individuals. Consequently, there is a pressing demand for identifying viable therapeutic targets for treating RA. This study aimed to explore the molecular mechanisms of osteoclast differentiation in PBMC from patients with RA through transcriptome sequencing and bioinformatics analysis.

View Article and Find Full Text PDF

This study aimed to identify shared gene expression related to circadian rhythm disruption in polycystic ovary syndrome (PCOS) and non-alcoholic fatty liver disease (NAFLD) to discover common diagnostic biomarkers. Visceral fat RNA samples were collected from 12 PCOS and 14 non-PCOS patients, a sample size representing the clinical situation and sufficient to capture PCOS gene expression profiles. Along with liver transcriptome profiles from NAFLD patients, these data were analyzed to identify crosstalk circadian rhythm-related genes (CRRGs) between the diseases.

View Article and Find Full Text PDF

Role of immune cell homeostasis in research and treatment response in hepatocellular carcinoma.

Clin Exp Med

January 2025

Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.

Introduction Recently, immune cells within the tumor microenvironment (TME) have become crucial in regulating cancer progression and treatment responses. The dynamic interactions between tumors and immune cells are emerging as a promising strategy to activate the host's immune system against various cancers. The development and progression of hepatocellular carcinoma (HCC) involve complex biological processes, with the role of the TME and tumor phenotypes still not fully understood.

View Article and Find Full Text PDF

We have recently shown that fluoxetine (FX) suppressed polyinosinic-polycytidylic acid-induced inflammatory response and endothelin release in human epidermal keratinocytes, via the indirect inhibition of the phosphoinositide 3-kinase (PI3K)-pathway. Because PI3K-signaling is a positive regulator of the proliferation, in the current, highly focused follow-up study, we assessed the effects of FX (14 µM) on the proliferation and differentiation of human epidermal keratinocytes. We found that FX exerted anti-proliferative actions in 2D cultures (HaCaT and primary human epidermal keratinocytes [NHEKs]; 48- and 72-h; CyQUANT-assay) as well as in 3D reconstructed epidermal equivalents (48-h; Ki-67 immunohistochemistry).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!