Background: Anthropogenic habitat change is occurring rapidly, and organisms can respond through within-generation responses that improve the match between their phenotype and the novel conditions they encounter. But, plastic responses can be adaptive or maladaptive and are most likely to be adaptive only when contemporary conditions reasonably mimic something experienced historically to which a response has already evolved. Noise pollution is a ubiquitous anthropogenic stressor that accompanies expanding urbanization. We tested whether the amplitude of traffic noise influences a suite of fitness-related traits (e.g. survival, life history, reproductive investment, immunity) and whether that depends on the life stage at which the noise is experienced (juvenile or adult). Our treatments mimic the conditions experienced by animals living in urban roadside environments with variable vehicle types, but continuous movement of traffic. We used the Pacific field cricket, an acoustically communicating insect that was previously shown to experience some negative behavioral and life history responses to very loud, variable traffic noise, as a model system.
Results: After exposing crickets to one of four traffic noise levels (silence, 50dBA, 60dBA, and 70dBA which are commonly experienced in their natural environment) during development, at adulthood, or both, we measured a comprehensive suite of fifteen fitness-related traits. We found that survival to adulthood was lower under some noise treatments than under silence, and that the number of live offspring hatched depended on the interaction between a female's juvenile and adult exposure to traffic noise. Both of these suggest that our noise treatments were indeed a stressor. However, we found no evidence of negative or positive fitness effects of noise on the other thirteen measured traits.
Conclusions: Our results suggest that, in contrast to previous work with loud, variable traffic noise, when noise exposure is relatively constant, plasticity may be sufficient to buffer many negative fitness effects and/or animals may be able to habituate to these conditions, regardless of amplitude. Our work highlights the importance of understanding how the particular characteristics of noise experienced by animals influence their biological responses and provides insight into how commensal animals thrive in human-dominated habitats.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10731782 | PMC |
http://dx.doi.org/10.1186/s12862-023-02190-2 | DOI Listing |
The explosive growth of mobile data traffic and the demands of 6 G networks for ultra-high data rates and low latency necessitate advanced infrastructure solutions. One promising approach is the implementation of radio-over-fiber (RoF)-based distributed antenna systems (DAS), which can efficiently transmit radio frequency signals over optical fiber, especially in dense indoor environments. However, analog RoF systems face challenges, including noise, nonlinearities, and power fading caused by chromatic dispersion.
View Article and Find Full Text PDFPLoS One
January 2025
State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing, China.
This study tried to focus on the older drivers' group and explore the impact factors of injury severity involving older drivers from geo-spatial analysis. To reach the goal, a spatial analysis was proposed employing geographic information systems (GIS) with a case study application to two counties in Nevada. First, crash clusters were explored using Density-Based Spatial Clustering of Applications with Noise (DBSCAN) approach to investigate the spatial crash pattern for older drivers, and determine high risk locations of injury severity.
View Article and Find Full Text PDFAntioxidants (Basel)
January 2025
Laboratory of Molecular Cardiology, Department of Cardiology 1, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany.
Noise pollution is a known health risk factor and evidence for cardiovascular diseases associated with traffic noise is growing. At least 20% of the European Union's population lives in noise-polluted areas with exposure levels exceeding the recommended limits of the World Health Organization, which is considered unhealthy by the European Environment Agency. This results in the annual loss of 1.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Department of Civil Engineering, National Institute of Technology, Mizoram, India.
Chronic exposure to traffic noise is associated with increased stress and sleep disruptions. Research on the health consequences of environmental noise, specifically traffic noise, has primarily been conducted in high-income countries (HICs), which have guided the development of noise regulations. The relevance of these findings to policy frameworks in low- and middle-income countries (LMICs) remains uncertain.
View Article and Find Full Text PDFJ Acoust Soc Am
January 2025
School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China.
Since traffic flow has not been generated, a traffic noise prediction model based on actual traffic state data cannot be directly applied to the planned road network. Therefore, a regional traffic noise prediction method is proposed to find the upper limit of network noise emission based on design elements. The model is developed with noise predictions of the basic road section, interrupted/continuous intersections, and regional network.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!