A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Temperature-dependent Fermi surface probed by Shubnikov-de Haas oscillations in topological semimetal candidates DyBi and HoBi. | LitMetric

Rare earth-based monopnictides are among the most intensively studied groups of materials in which extremely large magnetoresistance has been observed. This study explores magnetotransport properties of two representatives of this group, DyBi and HoBi. The extreme magnetoresistance is discovered in DyBi and confirmed in HoBi. At [Formula: see text] K and in [Formula: see text] T for both compounds, magnetoresistance reaches the order of magnitude of [Formula: see text]. For both materials, standard Kohler's rule is obeyed only in the temperature range from 50 to 300 K. At lower temperatures, extended Kohler's rule has to be invoked because carrier concentrations and mobilities strongly change with temperature and magnetic field. This is further proven by the observation of a quite rare temperature-dependence of oscillation frequencies in Shubnikov-de Haas effect. Rate of this dependence clearly changes at Néel temperature, reminiscent of a novel magnetic band splitting. Multi-frequency character of the observed Shubnikov-de Haas oscillations points to the coexistence of electron- and hole-type Fermi pockets in both studied materials. Overall, our results highlight correlation of temperature dependence of the Fermi surface with the magnetotransport properties of DyBi and HoBi.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10733278PMC
http://dx.doi.org/10.1038/s41598-023-49941-1DOI Listing

Publication Analysis

Top Keywords

shubnikov-de haas
12
dybi hobi
12
fermi surface
8
haas oscillations
8
kohler's rule
8
temperature-dependent fermi
4
surface probed
4
probed shubnikov-de
4
oscillations topological
4
topological semimetal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!