Full hardware implementation of neuromorphic visual system based on multimodal optoelectronic resistive memory arrays for versatile image processing.

Nat Commun

College of Artificial Intelligence, Chongqing Key Laboratory of Brain-inspired Computing and Intelligent Chips, Key Laboratory of Luminescence Analysis and Molecular Sensors (Ministry of Education), Southwest University, Chongqing, 400715, China.

Published: December 2023

In-sensor and near-sensor computing are becoming the next-generation computing paradigm for high-density and low-power sensory processing. To fulfil a high-density and efficient neuromorphic visual system with fully hierarchical emulation of the retina and visual cortex, emerging multimodal neuromorphic devices for multi-stage processing and a fully hardware-implemented system with versatile image processing functions are still lacking and highly desirable. Here we demonstrate an emerging multimodal-multifunctional resistive random-access memory (RRAM) device array based on modified silk fibroin protein (MSFP), exhibiting both optoelectronic RRAM (ORRAM) mode featured by unique negative and positive photoconductance memory and electrical RRAM (ERRAM) mode featured by analogue resistive switching. A full hardware implementation of the artificial visual system with versatile image processing functions is realised for the first time, including ORRAM mode array for the in-sensor image pre-processing (contrast enhancement, background denoising, feature extraction) and ERRAM mode array for near-sensor high-level image recognition, which hugely improves the integration density, and simply the circuit design and the fabrication and integration complexity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10733375PMC
http://dx.doi.org/10.1038/s41467-023-43944-2DOI Listing

Publication Analysis

Top Keywords

visual system
12
versatile image
12
image processing
12
full hardware
8
hardware implementation
8
neuromorphic visual
8
system versatile
8
processing functions
8
orram mode
8
mode featured
8

Similar Publications

Background: People share health-related experiences and treatments, such as for insomnia, in digital communities. Natural language processing tools can be leveraged to understand the terms used in digital spaces to discuss insomnia and insomnia treatments.

Objective: The aim of this study is to summarize and chart trends of insomnia treatment terms on a digital insomnia message board.

View Article and Find Full Text PDF

PRMT1-Mediated Arginine Methylation Promotes Corneal Epithelial Wound Healing via Epigenetic Regulation of ANXA3.

Invest Ophthalmol Vis Sci

January 2025

State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China.

Purpose: Protein arginine methyltransferase 1 (PRMT1) is an integral constituent of numerous cellular processes. However, its role in corneal epithelial wound healing (CEWH) remains unclear. This study investigates the impact of PRMT1 on cellular mechanisms underlying corneal epithelial repair and its potential to improve wound healing outcomes.

View Article and Find Full Text PDF

Glaucoma is an optic neuropathy in which progressive degeneration of retinal ganglion cells and the optic nerve leads to irreversible visual loss. Glaucoma is one of the leading causes of blindness. The pathogenesis of glaucoma is determined by different pathogenetic mechanisms, including increased intraocular pressure, mechanical stress, excitotoxicity, resistance to aqueous drainage and oxidative stress.

View Article and Find Full Text PDF

Although fluorescence analysis methods are widely used in pesticide residue detection, improving their sensitivity and selectivity remains a challenge. This paper presents a novel ratio fluorescence sensor based on the molecular imprinting polymers (MIPs) and metal-enhanced fluorescence for visual detection of dicamba (DIC). Calcium fluoride (CaF) quantum dots (QDs) were immobilized on the surface of Ag@MIPs, resulting in a blue fluorescence response signal (Ag@MIPs-CaF).

View Article and Find Full Text PDF

It is challenging to image structures in liquids for electron microscopy (EM); thus, low-temperature imaging has been developed, initially for aqueous systems. Organic liquids (OLs) are widely used as dispersants, although their cryogenic EM (cryo-EM) imaging is less common than that of aqueous systems. This is because the basic properties (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!