Pathogenic mutations in SCN5A could result in dysfunctions of Na1.5 and consequently lead to a wide range of inherited cardiac diseases. However, the presence of numerous SCN5A-related variants with unknown significance (VUS) and the comprehensive genotype-phenotype relationship pose challenges to precise diagnosis and genetic counseling for affected families. Here, we functionally identified two novel compound heterozygous variants (L256del and L1621F) in SCN5A in a Chinese family exhibiting complex congenital cardiac phenotypes from sudden cardiac death to overlapping syndromes including sick sinus syndrome and dilated cardiomyopathy in an autosomal recessive pattern. In silico tools predicted decreased stability and hydrophobicity of the two mutated proteins due to conformational changes. Patch-clamp electrophysiology revealed slightly decreased sodium currents, accelerated inactivation, and reduced sodium window current in the Na1.5-L1621F channels as well as no sodium currents in the Na1.5-L256del channels. Western blotting analysis demonstrated decreased expression levels of mutated Na1.5 on the plasma membrane, despite enhanced compensatory expression of the total Na1.5 expression levels. Immunofluorescence imaging showed abnormal condensed spots of the mutated channels within the cytoplasm instead of normal membrane distribution, indicating impaired trafficking. Overall, we identified the loss-of-function characteristics exhibited by the two variants, thereby providing further evidence for their pathogenic nature. Our findings not only extended the variation and phenotype spectrums of SCN5A, but also shed light on the crucial role of patch-clamp electrophysiology in the functional analysis of VUS in SCN5A, which have significant implications for the clinical diagnosis, management, and genetic counseling in affected individuals with complex cardiac phenotypes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2023.148093 | DOI Listing |
Mol Genet Genomic Med
January 2025
The State Key Laboratory for Complex Severe and Rare Diseases, the State Key Sci-Tech Infrastructure for Translational Medicine, Peking Union Medical College Hospital, Beijing, China.
Background: Primary ciliary dyskinesia (PCD) is a rare autosomal recessive disorder characterized by dysfunction of motile cilia. While approximately 50 genes have been identified, around 25% of PCD patients remain genetically unexplained; elucidating the pathogenicity of specific variants remains a challenge.
Methods: Whole exome sequencing (WES) and Sanger sequencing were conducted to identify potential pathogenic variants of PCD.
Front Genet
December 2024
Department of Pediatrics, West China Second University Hospital, Chengdu, Sichuan, China.
Background: Autosomal recessive cutis laxa type 1B (ARCL1B) is an extremely rare disease characterized by severe systemic connective tissue abnormalities, including cutis laxa, aneurysm and fragility of blood vessels, birth fractures and emphysema. The severity of this disease ranges from perinatal death to manifestations compatible with survival. To date, no cases have been reported in the Chinese population.
View Article and Find Full Text PDFFront Pediatr
December 2024
Paediatrics and Paediatric Respirology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom.
Ataxia-telangiectasia (A-T) is an ultrarare autosomal recessive disorder and occurs in all racial and ethnic backgrounds. Clinically, children and young people with A-T are affected by sinopulmonary infections, neurological deterioration with concomitant bulbar dysfunction, increased sensitivity to ionizing radiation, immunodeficiency, a decline in lung function, chronic liver disease, endocrine abnormalities, cutaneous and deep-organ granulomatosis, and early death. Pulmonary complications become more frequent in the second decade of life and are a leading cause of death in individuals with A-T.
View Article and Find Full Text PDFFront Psychiatry
December 2024
Translational Genomic Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
Background: Pathogenic variants in are associated with pyridoxine-dependent epilepsy (PDE), a rare autosomal recessive disorder characterized by epileptic seizures, unresponsiveness to standard antiseizure medications (ASM), and a response only to pyridoxine. Here, we report two patients (from a consanguineous family) with neonatal seizures and developmental delay.
Case Presentation: Patient 1 (a 13-year-old girl) was born normally at term.
J Pediatr Gastroenterol Nutr
January 2025
Department of Pathology and Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan.
Objectives: Wilson disease (WD) is an autosomal-recessive disorder that disrupts copper homeostasis. ATPase copper transporting beta (ATP7B) gene is implicated as the disease-causing gene in WD. The common symptoms associated with WD include hepatic, neurological, psychiatric, and ophthalmic manifestations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!