Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Traditional pulp convective drying (CD) is time-consuming and energy-intensive. This study aimed to assess the drying performance of pulp using ultrasound-assisted drying (UAD) and compared it with CD to intensify moisture separation. UAD was found to be fast and efficient with high effective moisture diffusivity of 2.77 × 10 ∼ 3.20 × 10 m/s, low activation energy of 20.2 kJ/mol, and short drying time of 21.0 ∼ 16.5 min. It demonstrated that applying ultrasound could promote moisture separation with 26 %∼42 % reductions in drying time and 42 %∼22 % savings in energy consumption. The constant rate period was not presented and no significant differences in drying rates were observed when the moisture ratio was below 0.43 under the investigated conditions. The kinetics modeling results indicated that the Page model was the best to predict the pulp drying kinetics for both methods. It may lead to an alternative efficient approach for decarbonizing the drying process in pulp and paper production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2023.130226 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!