A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

High-resolution chemical imaging to understand Cd activation in rice rhizosphere of karstic soils. | LitMetric

High-resolution chemical imaging to understand Cd activation in rice rhizosphere of karstic soils.

Chemosphere

Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China. Electronic address:

Published: February 2024

Cadmium (Cd) activation, especially at a high spatial resolution, in paddy soils with a high geogenic Cd background is yet to be understood. To investigate the temporal and spatial patterns of Cd activation in rice rhizosphere, pot and rhizotron experiments were conducted using four paddy soils with high geogenic Cd (0.11-3.70 mg kg) from Guangxi, southwestern China. The pot experiment results showed that porewater Cd concentrations initially decreased and then increased over the complete rice growth period, reaching its lowest value during the late-tillering and early-filling stages. Besides, correlation analysis identified organic matter and root manganese (Mn) content as the main factors affecting rice Cd uptake, with Mn having a negative effect and organic matter having a positive effect. Sub-millimeter two-dimensional chemical imaging revealed that the distribution of labile Cd in the rhizosphere (by diffusive gradients in thin-films, or DGT) was influenced by the root system and soil properties, such as pH (by planar optode) and acid phosphatase activity (by soil zymography). Soil acid phosphatase activity increased under Cd stress. The overall pH at rice rhizosphere decreased. Moreover, a close relationship was found between the spatial distributions of soil labile Mn and Cd at the rhizosphere, with higher Mn being associated with lower Cd lability. This study highlights Mn as a key element in regulating rice Cd uptake and enlightens future Mn-based strategies for addressing Cd pollution in rice paddy soils, especially in karst areas with high geochemical background.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.140988DOI Listing

Publication Analysis

Top Keywords

rice rhizosphere
12
paddy soils
12
chemical imaging
8
activation rice
8
soils high
8
high geogenic
8
organic matter
8
rice uptake
8
labile rhizosphere
8
acid phosphatase
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!