Nonalcoholic fatty liver disease (NAFLD) is featured with excessive hepatic lipid accumulation and its global prevalence is soaring. Nonalcoholic steatohepatitis (NASH), the severe systemic inflammatory subtype of NAFLD, is tightly associated with metabolic comorbidities, and the hepatocytes manifest severe inflammation and ballooning. Currently the therapeutic options for treating NASH are limited. Potent small molecules specifically intervene with the signaling pathways that promote pathogenesis of NASH. Nevertheless they have obvious adverse effects and show long-term ineffectiveness in clinical trials. It poses the fundamental question to efficiently and safely inhibit the pathogenic processes. Targeted protein degradation (TPD) belongs to the direct degradation strategies and is a burgeoning strategy. It utilizes the small molecules to bind to the target proteins and recruit the endogenous proteasome, lysosome and autophagosome-mediated degradation machineries. They effectively and specifically degrade the target proteins. It has exhibited promising therapeutic effects in treatment of cancer, neurodegenerative diseases and other diseases in a catalytic manner at low doses. We critically discuss the principles of multiple direct degradation strategies, especially PROTAC and ATTEC. We extensively analyze their emerging application in degradation of excessive pathogenic proteins and lipid droplets, which promote the progression of NASH. Moreover, we discuss the opposite strategy that utilizes the small molecules to recruit deubiquinases to stabilize the NASH/MASH-suppressing proteins. Their advantages, limitations, as well as the solutions to address the limitations have been analyzed. In summary, the innovative direct degradation strategies provide new insights into design of next-generation therapeutics to combat NASH with optimal safety paradigm and efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2023.115989DOI Listing

Publication Analysis

Top Keywords

direct degradation
16
small molecules
12
degradation strategies
12
nonalcoholic steatohepatitis
8
strategy utilizes
8
utilizes small
8
target proteins
8
degradation
6
proteins
5
nash
5

Similar Publications

Neuroendocrine tumors and diabetes mellitus: which treatment and which effect.

Endocrine

January 2025

Unit of Endocrinology, Department of Clinical and Molecular Medicine, ENETS Center of Excellence, Sapienza University of Rome, Rome, Italy.

Diabetes mellitus (DM) and neuroendocrine tumors (NET) can exert unfavorable effects on each other prognosis. In this narrative review, we evaluated the effects of NET therapies on glycemic control and DM management and the effects of anti-diabetic therapies on NET outcome and management. For this purpose, we searched the PubMed, Science Direct, and Google Scholar databases for studies reporting the effects of NET therapy on DM as well as the effect of DM therapy on NET.

View Article and Find Full Text PDF

FcRn-guided antigen trafficking enhances cancer vaccine efficacy.

Cancer Immunol Immunother

January 2025

Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, People's Republic of China.

The development of tumor vaccines represents a significant focus within cancer therapeutics research. Nonetheless, the efficiency of antigen presentation in tumor vaccine remains suboptimal. We introduce an innovative mRNA-lipid nanoparticle platform designed to express tumor antigenic epitopes fused with the transmembrane domain and cytoplasmic tail of the neonatal Fc receptor (FcRn).

View Article and Find Full Text PDF

Produced water management is a significant challenge for the oil and gas industry. Due to the large volumes and complex composition of this water, treatment requires special attention, resulting in high costs for companies in the sector. Naphthenic acids, known for their recalcitrance, add a layer of complexity to the treatment process.

View Article and Find Full Text PDF

Background: Compared with the E3 allele of Apolipoprotein E (APOE), E4 increases late-onset Alzheimer's Disease (AD) risk up to 15-fold, while the E2 allele substantially decreases risk. In the CNS, ApoE is predominantly synthesized by astrocytes and microglia, making these two cell types promising targets for ApoE-directed therapeutic approaches. Our lab has generated an inducible "switch" mouse model (APOE4s2) in which we can conditionally replace E4 with the protective E2 in a cell-specific manner.

View Article and Find Full Text PDF

Background: The direct and chaperone-associated interactions of E3 ubiquitin ligase CHIP with tau in Alzheimer's disease and other tauopathies, regulates tau turnover, by directly linking it to ubiquitination and proteasomal degradation, as well as through suppression of tau aggregation. Modulation of these CHIP-driven tau clearance mechanisms can be an effective treatment strategy. Antigen-binding antibody fragments (Fabs) are potent tools that can highly-selectively engage target proteins and act as functional probes or inhibitors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!