A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modeling multiple correlated end-organ disease trajectories: A tutorial for multistate and joint models with applications in diabetes complications. | LitMetric

State-of-the-art biostatistics methods allow for the simultaneous modeling of several correlated non-fatal disease processes over time, but there is no clear guidance on the optimal analysis in most settings. An example occurs in diabetes, where it is not known with certainty how microvascular complications of the eyes, kidneys, and nerves co-develop over time. In this article, we propose and contrast two general model frameworks for studying complications (sequential state and parallel trajectory frameworks) and review multivariate methods for their analysis, focusing on multistate and joint modeling. We illustrate these methods in a tutorial format using the long-term follow-up from the Diabetes Control and Complications Trial and Epidemiology of Diabetes Interventions and Complications study public data repository. A formal comparison of prediction error and discrimination is included. Multistate models are particularly advantageous for determining the order and timing of complications, but require discretization of the longitudinal outcomes and possibly a very complex state space process. Intermittent observation of the states must be accounted for, and discretization is a probable disadvantage in this setting. In contrast, joint models can account for variations of continuous biomarkers over time and are particularly designed for modeling complex association structures between the complications and for performing dynamic predictions of an outcome of interest to inform clinical decisions (eg, a late-stage complication). We found that both models have helpful features that can better-inform our understanding of the complex trajectories that complications may take and can therefore help with decision making for patients presenting with diabetes complications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/sim.9984DOI Listing

Publication Analysis

Top Keywords

complications
9
multistate joint
8
joint models
8
diabetes complications
8
diabetes
5
modeling
4
modeling multiple
4
multiple correlated
4
correlated end-organ
4
end-organ disease
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!