Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
State-of-the-art biostatistics methods allow for the simultaneous modeling of several correlated non-fatal disease processes over time, but there is no clear guidance on the optimal analysis in most settings. An example occurs in diabetes, where it is not known with certainty how microvascular complications of the eyes, kidneys, and nerves co-develop over time. In this article, we propose and contrast two general model frameworks for studying complications (sequential state and parallel trajectory frameworks) and review multivariate methods for their analysis, focusing on multistate and joint modeling. We illustrate these methods in a tutorial format using the long-term follow-up from the Diabetes Control and Complications Trial and Epidemiology of Diabetes Interventions and Complications study public data repository. A formal comparison of prediction error and discrimination is included. Multistate models are particularly advantageous for determining the order and timing of complications, but require discretization of the longitudinal outcomes and possibly a very complex state space process. Intermittent observation of the states must be accounted for, and discretization is a probable disadvantage in this setting. In contrast, joint models can account for variations of continuous biomarkers over time and are particularly designed for modeling complex association structures between the complications and for performing dynamic predictions of an outcome of interest to inform clinical decisions (eg, a late-stage complication). We found that both models have helpful features that can better-inform our understanding of the complex trajectories that complications may take and can therefore help with decision making for patients presenting with diabetes complications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/sim.9984 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!