Si Miao San relieves hyperuricemia by regulating intestinal flora.

Biomed Chromatogr

Department of Nursing, Hangzhou Wuyunshan Hospital (Hangzhou Institute of Health Promotion), Hangzhou, Zhejiang Province, China.

Published: March 2024

This study seeks to investigate the therapeutic effects of Si Miao San (SMS) on hyperuricemia and its underlying mechanisms, particularly focusing on the role of intestinal flora. The key components of SMS were identified using high-performance liquid chromatography (HPLC). To establish a rat model of hyperuricemia, an intraperitoneal injection of potassium oxonate was performed, followed by oral administration of various concentrations of SMS. The study evaluated the status of hyperuricemia, renal pathology, xanthine oxidase (XO) activity, and intestinal flora. Utilizing HPLC, we identified five active components of SMS. Following SMS intervention, there was a significant reduction in serum levels of uric acid (UA), blood urea nitrogen, and creatinine, accompanied by an increase in urine UA levels in rats with hyperuricemia. Distinct pathological injuries were evident in the renal tissues of hyperuricemic rats, and these were partially alleviated following SMS intervention. Moreover, SMS exhibited a dose-dependent reduction in XO activity both in the serum and hepatic tissues. Notably, SMS contributed to an enhancement in the diversity of intestinal flora in hyperuricemic rats. The intervention of SMS resulted in a reduction in the abundance of certain bacterial species, including Parabacteroides johnsonii, Corynebacterium urealyticum, and Burkholderiales bacterium. This suggests that SMS may exert anti-hyperuricemia effects, potentially by modulating the composition of intestinal flora.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bmc.5807DOI Listing

Publication Analysis

Top Keywords

intestinal flora
20
sms
10
miao san
8
components sms
8
sms intervention
8
hyperuricemic rats
8
intervention sms
8
hyperuricemia
5
intestinal
5
flora
5

Similar Publications

Article Synopsis
  • The emergence of Next Generation Sequencing (NGS) technology has transformed clinical diagnostics, providing extensive microbiome data for personalized medicine.
  • Despite its potential, microbiome data's complexity and variability pose challenges for traditional statistical and machine learning approaches, including deep learning.
  • The paper presents a novel feature engineering technique that combines two data feature sets, significantly improving the Deep Neural Network's performance in colorectal cancer detection, raising the Area Under the Curve (AUC) from 0.800 to 0.923, thus enhancing microbiome data analysis and disease detection capabilities.
View Article and Find Full Text PDF

Microbiota in the gastrointestinal tract (GIT) consisting of the rumen and hindgut (the small intestine, cecum and colon) in dairy calves play a vital role in their growth and development. This review discusses the development of dairy calf intestinal microbiomes with an emphasis on the impact that husbandry and rearing management have on microbiome development, health and growth of pre-weaned dairy calves. The diversity and composition of the microbes that colonize the lower GIT (small and large intestine) can have a significant impact on the growth and development of the calf, through influence on nutrient metabolism, immune modulation, resistance or susceptibility to infection, production outputs and behaviour modification in adult life.

View Article and Find Full Text PDF

Human-derived microRNA 21 regulates indole and L-tryptophan biosynthesis transcripts in the gut commensal .

mBio

January 2025

Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria.

Unlabelled: In the gut, microRNAs (miRNAs) produced by intestinal epithelial cells are secreted into the lumen and can shape the composition and function of the gut microbiome. Crosstalk between gut microbes and the host plays a key role in irritable bowel syndrome (IBS) and inflammatory bowel diseases, yet little is known about how the miRNA-gut microbiome axis contributes to the pathogenesis of these conditions. Here, we investigate the ability of miR-21, a miRNA that we found decreased in fecal samples from IBS patients, to associate with and regulate gut microbiome function.

View Article and Find Full Text PDF

Ricefield eel is an important economic fish in China. However, large-scale intensive breeding has increased the incidence of diseases in eels. In this study, we conducted an 8-week feeding trial to investigate the effects of -glucan on the growth performance, intestinal health, and resistance of ().

View Article and Find Full Text PDF

Introduction: Enterotoxic (ETEC) is the main pathogen that causes diarrhea, especially in young children. This disease can lead to substantial morbidity and mortality and is a major global health concern. Managing ETEC infections is challenging owing to the increasing prevalence of antibiotic resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!