A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Early prediction of drug-resistant epilepsy using clinical and EEG features based on convolutional neural network. | LitMetric

Objective: Machine learning utilization in electroencephalogram (EEG) analysis and epilepsy care is fast evolving. Thus, we aim to develop and validate two one-dimensional convolutional neural network (CNN) algorithms for predicting drug-resistant epilepsy (DRE) in patients with newly-diagnosed epilepsy based on EEG and clinical features.

Methods: We included a total of 1010 EEG signal epochs and 15 clinical features from 101 patients with epilepsy. Each patient had 10 epochs of EEG signal data, with each signal recorded for 90 s. The ratio of development set and validation set was 80:20, and ten-fold cross validation was performed. First, a CNN algorithm was used to extract EEG features automatically. Then, Two one-dimensional CNNs were crafted.. Accuracy, specificity, precision, sensitivity, F1-score, kappa statistics, mean square error (MSE) and area under the curve (AUC) were calculated to evaluate the classifiers performance.

Results: The clinical-EEG model showed good performance and clinical practical value, with the accuracy, specificity, precision, sensitivity, F1-score, kappa statistics, best MSE and AUC in test set were 0.99, 0.72, 0.82, 0.96, 0.89, 0.83, 32.00, 0.81, respectively, and the accuracy in validation set was 0.84. In the EEG model, the accuracy, specificity, precision, sensitivity, F1-score, kappa statistics, best MSE and AUC in test set were 0.99, 0.59, 0.82, 0.90, 0.86, 0.72, 181.76, 0.76, respectively, and the accuracy in validation set was 0.81.

Conclusion: We constructed a clinical-EEG model showed good potential for predicting DRE in patients with newly-diagnosed epilepsy, which could help identify patients at high risk of developing DRE at earlier stages.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.seizure.2023.12.009DOI Listing

Publication Analysis

Top Keywords

validation set
12
accuracy specificity
12
specificity precision
12
precision sensitivity
12
sensitivity f1-score
12
f1-score kappa
12
kappa statistics
12
drug-resistant epilepsy
8
eeg features
8
dre patients
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!