Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Bimetallic glucose oxidation electrocatalysts were synthesized by two electrochemical reduction reactions carried out in series onto a titanium electrode. Nickel was deposited in the first synthesis stage followed by either silver or copper in the second stage to form Ag@Ni and Cu@Ni bimetallic structures. The chemical composition, crystal structure, and morphology of the resulting metal coating of the titanium electrode were investigated by X-ray diffraction, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and electron microscopy. The electrocatalytic performance of the coated titanium electrodes toward glucose oxidation was probed using cyclic voltammetry and amperometry. It was found that the unique high surface area bimetallic structures have superior electrocatalytic activity compared to nickel alone. The resulting catalyst-coated titanium electrode served as a nonenzymatic glucose sensor with high sensitivity and low limit of detection for glucose. The Cu@Ni catalyst enables accurate measurement of glucose over the concentration range of 0.2-12 mM, which includes the full normal human blood glucose range, with the maximum level extending high enough to encompass warning levels for prediabetic and diabetic conditions. The sensors were also found to perform well in the presence of several chemical compounds found in human blood known to interfere with nonenzymatic sensors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10788829 | PMC |
http://dx.doi.org/10.1021/acsami.3c10167 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!