Identifying Local Interfaces.

J Phys Chem B

Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, Arizona 86011, United States.

Published: February 2024

While interfacial regions often occupy a relatively small portion of a system, physical and chemical processes often proceed differently within them. It is therefore useful to identify interfacial regions to answer many questions in physical chemistry. Thermodynamic phases are often described by their density and local structure; therefore, interfacial regions can then be defined as regions with densities and structures that deviate from the properties of the neighboring phases. Using this perspective of local density and structure around an atom, we describe a "directed search cone" method that has proved useful in identifying atoms that sit at the interface between two regions of a system. We call the set of atoms found to be sitting on the surface "leading atoms", and we construct an interface from these atoms that we call the "leading layer interface". We demonstrate the leading layer interface on solid-vacuum, liquid-vacuum, and liquid-vapor systems. In addition to presenting our method and example calculations, we discuss some observations of local density fluctuations that may be useful for the analysis of heterogeneous systems. Depending on the circumstances, there are various perspectives of an interface that may be insightful, and our leading layer interface will be useful in situations where the correlation between interfacial dynamics and local molecular composition is investigated.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.3c06364DOI Listing

Publication Analysis

Top Keywords

interfacial regions
12
local density
8
leading layer
8
layer interface
8
regions
5
interface
5
identifying local
4
local interfaces
4
interfacial
4
interfaces interfacial
4

Similar Publications

The ion binding to the lipid/water interface can substantially influence the structural, functional, and dynamic properties of the cell membrane. Despite extensive research on ion-lipid interactions, the specific effects of ion binding on the polarity and hydration at the lipid/water interface remain poorly understood. This study explores the influence of three biologically relevant divalent cations─Mg, Ca, and Zn─on the depth-dependent interfacial polarity and hydration of zwitterionic DPPC lipid in its gel phase at room temperature.

View Article and Find Full Text PDF

Inward rectifying potassium (Kir) channels play a critical role in maintaining the resting membrane potential and cellular homeostasis. The high-resolution crystal structure of homotetrameric KirBac1.1 in detergent micelles provides a snapshot of the closed state.

View Article and Find Full Text PDF

Toxic Effects of Butanol in the Plane of the Cell Membrane.

Langmuir

January 2025

Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45220, United States.

Solvent toxicity limits -butanol fermentation titer, increasing the cost and energy consumption for subsequent separation processes and making biobased production more expensive and energy-intensive than petrochemical approaches. Amphiphilic solvents such as -butanol partition into the cell membrane of fermenting microorganisms, thinning the transverse structure, and eventually causing a loss of membrane potential and cell death. In this work, we demonstrate the deleterious effects of -butanol partitioning upon the lateral dimension of the membrane structure, called membrane domains or lipid rafts.

View Article and Find Full Text PDF

Due to the complex physical properties of low-permeability glutenite reservoirs, the oil recovery rate with conventional development is low. Surfactants are effective additives for enhanced oil recovery (EOR) due to their good ability of wettability alteration and interfacial tension (IFT) reduction, but the reason why imbibition efficiencies vary with different types of surfactants and the mechanism of enhanced imbibition in the glutenite reservoirs is not clear. In this study, the imbibition efficiency and recovery of surfactants including the nonionic, anionic, and cationic surfactants as well as nanofluids were evaluated and compared with produced water (PW) using low-permeability glutenite core samples from the Lower Urho Formation in the Mahu oil field.

View Article and Find Full Text PDF

Band Alignment of Stacked Crystalline Si/GaN pn Heterostructures Interfaced with an Amorphous Region Using X-Ray Photoelectron Spectroscopy.

Materials (Basel)

December 2024

School of Electronics and Information Engineering, Korea Aerospace University, Goyang 10540, Republic of Korea.

The energy band alignment of a stacked Si/GaN heterostructure was investigated using X-ray photoelectron spectroscopy (XPS) depth profiling, highlighting the influence of the amorphous interface region on the electronic properties. The crystalline Si/GaN pn heterostructure was formed by stacking a Si nanomembrane onto a GaN epi-substrate. The amorphous layer formed at the stacked Si/GaN interface altered the energy band of the stacked heterostructure and affected the injection of charge carriers across the junction interface region.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!