Single-shot optical imaging based on ultrashort lasers has revealed nonrepetitive processes in subnanosecond timescales beyond the recording range of conventional high-speed cameras. However, nanosecond photography without sacrificing short exposure time and image quality is still missing because of the gap in recordable timescales between ultrafast optical imaging and high-speed electronic cameras. Here, we demonstrate nanosecond photography and ultrawide time-range high-speed photography using a spectrum circuit that produces interval-tunable pulse trains while keeping short pulse durations. We capture a shock wave propagating through a biological cell with a 1.5-ns frame interval and 44-ps exposure time while suppressing image blur. Furthermore, we observe femtosecond laser processing over multiple timescales (25-ps, 2.0-ns, and 1-ms frame intervals), showing that the plasma generated at the picosecond timescale affects subsequent shock wave formation at the nanosecond timescale. Our technique contributes to accumulating data of various fast processes for analysis and to analyzing multi-timescale phenomena as a series of physical processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10732534PMC
http://dx.doi.org/10.1126/sciadv.adj8608DOI Listing

Publication Analysis

Top Keywords

optical imaging
12
single-shot optical
8
spectrum circuit
8
high-speed photography
8
nanosecond photography
8
exposure time
8
shock wave
8
imaging spectrum
4
circuit bridging
4
timescales
4

Similar Publications

Deep learning enhanced quantum holography with undetected photons.

Photonix

December 2024

Department of Biomedical Engineering, Texas A&M University, College Station, 77843 TX USA.

Unlabelled: Holography is an essential technique of generating three-dimensional images. Recently, quantum holography with undetected photons (QHUP) has emerged as a groundbreaking method capable of capturing complex amplitude images. Despite its potential, the practical application of QHUP has been limited by susceptibility to phase disturbances, low interference visibility, and limited spatial resolution.

View Article and Find Full Text PDF

Background: Attention deficit hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder characterized by inattention, impulsivity, and hyperactivity. With the continuous development of neuromodulation technology, Repetitive Transcranial Magnetic Stimulation (rTMS) has emerged as a potential non-invasive treatment for ADHD. However, there is a lack of research on the mechanism of rTMS for ADHD.

View Article and Find Full Text PDF

Significance: Stroke is the leading cause of chronic disability in the United States. How stroke size affects post-stroke repair and recovery is poorly understood.

Aim: We aim to investigate the effects of stroke size on early repair patterns and determine how early changes in neuronal circuits and networks predict functional outcomes after stroke.

View Article and Find Full Text PDF

Optical imaging of neuronal voltage dynamics is invaluable to studying brain functions. However, high-speed imaging at significant depth is challenging due to the limitations of the short pixel dwell time and the maximum permissible excitation power in tissues. We report high-speed, deep voltage imaging by applying adaptive excitation, which illuminates the regions of interest only.

View Article and Find Full Text PDF

"The eyes are a window to the brain," prompting the investigation of whether retinal biomarkers can indicate Alzheimer disease (AD) and cognitive impairment. AD is a neurodegenerative condition with a lengthy preclinical phase where pathologic changes in the central nervous system (CNS) occur before clinical symptoms. Mild cognitive impairment (MCI) often precedes AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!