Along subduction zones, high-relief topography is associated with sustained volcanism parallel to the plate margin. However, the relationship between magmatism and mountain building in arcs is poorly understood. Here, we study patterns of surface deformation and correlated fluvial knickpoints in the Columbia River Gorge to link long-term magmatism to the uplift and ensuing topographic development of the Cascade Range. An upwarped paleochannel exposed in the walls of the Gorge constrains unsteady deep magma flux, the ratio of intrusive to extrusive magmatic contributions to topography, and the impact of magmatism on Columbia River incision since 3.5 million years ago. Geophysical data indicate that deep magma influx beneath the arc axis is ongoing and not aligned with the current locations of volcanic edifices, representing a broad regional influence on arc construction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10732527PMC
http://dx.doi.org/10.1126/sciadv.adj3357DOI Listing

Publication Analysis

Top Keywords

columbia river
12
river gorge
8
deep magma
8
magmatic origin
4
origin columbia
4
gorge usa
4
usa subduction
4
subduction zones
4
zones high-relief
4
high-relief topography
4

Similar Publications

The potential risk posed by infectious agents (IAs) associated with netpen aquaculture to wild fishes is determined based on the "release" of IAs from netpens into the environment, the "exposure" of the wild fish to those released agents, and the "consequence" for wild fish experiencing infection by those agents. Information available to characterize these three factors is often lacking, and the occurrence of transmission from aquaculture to wild fish as well as potential consequences of such transmission are difficult to observe. In this study, we utilized environmental DNA (eDNA) to characterize the release of dozens of IAs from, and exposure of Pacific salmon to, Atlantic salmon aquaculture.

View Article and Find Full Text PDF

RIFM fragrance ingredient safety assessment, geranyl crotonate, CAS Registry Number 56172-46-4.

Food Chem Toxicol

December 2024

Member Expert Panel for Fragrance Safety, The Journal of Dermatological Science (JDS), Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.

View Article and Find Full Text PDF

Update to RIFM fragrance ingredient safety assessment, 2-methyl-4(2,2,3-trimethyl-3-cyclopentenyl)butanol, CAS Registry Number 72089-08-8.

Food Chem Toxicol

December 2024

Member Expert Panel for Fragrance Safety, The Journal of Dermatological Science (JDS), Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.

View Article and Find Full Text PDF

RIFM fragrance ingredient safety assessment, β-pinene, CAS Registry Number 127-91-3.

Food Chem Toxicol

December 2024

Member Expert Panel for Fragrance Safety, The Journal of Dermatological Science (JDS), Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.

View Article and Find Full Text PDF

During their lifespan, plants are often exposed to a broad range of stresses that change their redox balance and lead to accumulation of reactive oxygen species (ROS). The traditional view is that this comes with negative consequences to cells structural integrity and metabolism and, to prevent this, plants evolved a complex and well-coordinated antioxidant defence system that relies on the operation of a range of enzymatic and non-enzymatic antioxidants (AO). Due to the simplicity of measuring their activity, and in the light of the persistent dogma that stress-induced ROS accumulation is detrimental for plants, it is not surprising that enzymatic AO have often been advocated as suitable proxies for stress tolerance, as well as potential targets for improving tolerance traits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!