Effects of environmental conditions on healthcare worker wellbeing and quality of care: A qualitative study in Niger.

PLOS Glob Public Health

The Water Institute at UNC, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.

Published: December 2023

Environmental conditions (water, sanitation, hygiene, waste management, cleaning, energy, building design) are important for a safe and functional healthcare environment. Yet their full range of impacts are not well understood. In this study, we assessed the impact of environmental conditions on healthcare workers' wellbeing and quality of care, using qualitative interviews with 81 healthcare workers at 26 small healthcare facilities in rural Niger. We asked participants to report successes and challenges with environmental conditions and their impacts on wellbeing (physical, social, mental, and economic) and quality of care. We found that all environmental conditions contributed to healthcare workers' wellbeing and quality of care. The norm in facilities of our sample was poor environmental conditions, and thus participants primarily reported detrimental effects. We identified previously documented effects on physical health and safety from pathogen exposure, but also several novel effects on healthcare workers' mental and economic wellbeing and on efficiency, timeliness, and patient centeredness of care. Key wellbeing impacts included pathogen exposure for healthcare workers, stress from unsafe and chaotic working environments, staff dissatisfaction and retention challenges, out-of-pocket spending to avoid stockouts, and uncompensated labor. Key quality of care impacts included pathogen exposure for patients, healthcare worker time dedicated to non-medical tasks like water fetching (i.e., reduced efficiency), breakdowns and spoilage of equipment and supplies, and patient satisfaction with cleanliness and privacy. Inefficiency due to time lost and damaged supplies and equipment likely have substantial economic value and warrant greater consideration in research and policy making. Impacts on staff retention and care efficiency also have implications for health systems. We recommend that future research and decision making for policy and practice incorporate more holistic impact measures beyond just healthcare acquired infections and reconsider the substantial contribution that environmental conditions make to the safety of healthcare facilities and strength of health systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10732385PMC
http://dx.doi.org/10.1371/journal.pgph.0002590DOI Listing

Publication Analysis

Top Keywords

environmental conditions
28
quality care
20
wellbeing quality
12
healthcare workers'
12
pathogen exposure
12
healthcare
11
conditions healthcare
8
healthcare worker
8
care qualitative
8
workers' wellbeing
8

Similar Publications

A novel cross-priming amplification technique combined with lateral flow strips for rapid and visual detection of zoonotic Toxoplasma gondii.

Vet Parasitol

January 2025

Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China. Electronic address:

Toxoplasma gondii, an obligate intracellular protozoan, infects almost all warm-blooded animals and humans, with felines serving as its sole definitive hosts. Cats release T. gondii oocysts into the environment through feces, contributing to environmental contamination that can lead to toxoplasmosis in humans upon exposure through ingestion of contaminated food, water, or soil.

View Article and Find Full Text PDF

Climate change is rapidly altering Arctic marine environments, leading to warmer waters, increased river discharge, and accelerated sea ice melt. The Hudson Bay Marine System (HBMS) experiences the fastest rate of sea ice loss in the Canadian North resulting in a prolonged open water season during the summer months. We examined microbial communities in the Hudson Strait using high throughput 16s rRNA gene sequencing during the peak of summer, in which the bay was almost completely ice-free, and air temperatures were high.

View Article and Find Full Text PDF

Ambient Air Pollution and COPD: The Multiethnic Cohort Study.

Ann Am Thorac Soc

January 2025

University of California San Francisco, Department of Epidemiology and Biostatistics, San Francisco, California, United States.

Rationale: Globally, in 2019, chronic obstructive pulmonary disease (COPD) was the third leading cause of death. While tobacco smoking is the predominant risk factor, the role of long-term air pollution exposure in increasing risk of COPD remains unclear. Moreover, there are few studies that have been conducted in racial and ethnic minoritized and socioeconomically diverse populations, while accounting for smoking history and other known risk factors.

View Article and Find Full Text PDF

Waste Heat and Habitability: Constraints from Technological Energy Consumption.

Astrobiology

January 2025

Department of Aerospace, Physics and Space Sciences, Florida Institute of Technology, Melbourne, Florida, USA.

Waste heat production represents an inevitable consequence of energy conversion as per the laws of thermodynamics. Based on this fact, by using simple theoretical models, we analyze constraints on the habitability of Earth-like terrestrial planets hosting putative technological species and technospheres characterized by persistent exponential growth of energy consumption and waste heat generation. In particular, we quantify the deleterious effects of rising surface temperature on biospheric processes and the eventual loss of liquid water.

View Article and Find Full Text PDF

Food allergy is a complex disease, with multiple environmental factors involved. Considering the regulatory effect of toxin A (Tcd A) on biological processes of allergic reactions, the role of oral exposure to Tcd A on food allergy was investigated. The intestinal permeability and β-hexosaminidase were promoted by Tcd A using the in vitro Caco-2 and HT-29 cells coculture monolayer and bone marrow-derived mast cell (MCs) degranulation model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!