A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An Information Fusion System-Driven Deep Neural Networks With Application to Cancer Mortality Risk Estimate. | LitMetric

AI Article Synopsis

  • * The proposed information fusion system utilizes a fuzzy framework to merge deep-learning-based risk scores, accounting for time-varying effects and interactions between outcomes and predictors to enhance mortality risk estimation.
  • * Evaluating the system using head and neck squamous cell carcinoma (HNSCC) genomic data demonstrated its capability to identify key mortality-related genes and suggested new therapeutic targets linked to cancer inflammatory responses and specific signaling pathways.

Article Abstract

Next-generation sequencing (NGS) genomic data offer valuable high-throughput genomic information for computational applications in medicine. Using genomic data to identify disease-associated genes to estimate cancer mortality risk remains challenging regarding to computational efficiency and risk integration. For determining mortality-related genes, we propose an information fusion system based on a fuzzy system to fuse the numerous deep-learning-based risk scores, consider the significance of features related to time-varying effects and risk stratifications, and interpret the directional relationship and interaction between outcome and predictors. Fuzzy rules were implemented to integrate the considerations mentioned above by merging all the risk score models to achieve advanced risk estimation. The genomic data of head and neck squamous cell carcinoma (HNSCC) were used to evaluate the performance of the proposed computational approach. The results indicated that the proposed computational approach exhibited optimal ability to identify mortality risk-related genes in HNSCC patients. The results also suggest that HNSCC mortality is associated with cancer inflammatory response, the interleukin-17A signaling pathway, stellate cell activation, and the extracellular-regulated protein kinase five signaling pathway, which might offer new therapeutic targets HNSCC through immunologic or antiangiogenic mechanisms. The proposed information fusion system can promote the determination of high-risk genes related to cancer mortality. This study contributes a valid cancer mortality risk estimate that can identify mortality-related genes.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2023.3342462DOI Listing

Publication Analysis

Top Keywords

cancer mortality
16
mortality risk
12
genomic data
12
risk
8
risk estimate
8
mortality-related genes
8
fusion system
8
proposed computational
8
computational approach
8
signaling pathway
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!