Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Cameron County, a low-income south Texas-Mexico border county marked by severe health disparities, was consistently among the top counties with the highest COVID-19 mortality in Texas at the onset of the pandemic. The disparity in COVID-19 burden within Texas counties revealed the need for effective interventions to address the specific needs of local health departments and their communities. Publicly available COVID-19 surveillance data were not sufficiently timely or granular to deliver such targeted interventions. An agency-academic collaboration in Cameron used novel geographic information science methods to produce granular COVID-19 surveillance data. These data were used to strategically target an educational outreach intervention named "Boots on the Ground" (BOG) in the City of Brownsville (COB).
Objective: This study aimed to evaluate the impact of a spatially targeted community intervention on daily COVID-19 test counts.
Methods: The agency-academic collaboration between the COB and UTHealth Houston led to the creation of weekly COVID-19 epidemiological reports at the census tract level. These reports guided the selection of census tracts to deliver targeted BOG between April 21 and June 8, 2020. Recordkeeping of the targeted BOG tracts and the intervention dates, along with COVID-19 daily testing counts per census tract, provided data for intervention evaluation. An interrupted time series design was used to evaluate the impact on COVID-19 test counts 2 weeks before and after targeted BOG. A piecewise Poisson regression analysis was used to quantify the slope (sustained) and intercept (immediate) change between pre- and post-BOG COVID-19 daily test count trends. Additional analysis of COB tracts that did not receive targeted BOG was conducted for comparison purposes.
Results: During the intervention period, 18 of the 48 COB census tracts received targeted BOG. Among these, a significant change in the slope between pre- and post-BOG daily test counts was observed in 5 tracts, 80% (n=4) of which had a positive slope change. A positive slope change implied a significant increase in daily COVID-19 test counts 2 weeks after targeted BOG compared to the testing trend observed 2 weeks before intervention. In an additional analysis of the 30 census tracts that did not receive targeted BOG, significant slope changes were observed in 10 tracts, of which positive slope changes were only observed in 20% (n=2). In summary, we found that BOG-targeted tracts had mostly positive daily COVID-19 test count slope changes, whereas untargeted tracts had mostly negative daily COVID-19 test count slope changes.
Conclusions: Evaluation of spatially targeted community interventions is necessary to strengthen the evidence base of this important approach for local emergency preparedness. This report highlights how an academic-agency collaboration established and evaluated the impact of a real-time, targeted intervention delivering precision public health to a small community.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10765283 | PMC |
http://dx.doi.org/10.2196/47981 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!