Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: Gemcitabine and nab-paclitaxel (GnP) treatment, the standard first-line chemotherapy for unresectable pancreatic cancer, often causes peripheral neuropathy (PN). To develop alternative dosing strategies to avoid severe PN, understanding the relationship between pharmacokinetics (PK) and pharmacodynamics/toxicodynamics (PD/TD) is necessary. We established a PK-PD/TD model of GnP treatment to develop an optimal dose schedule.
Methods: A mouse xenograft model of human pancreatic cancer was generated to measure drug concentrations in the plasma and tumor, antitumor effects, and PN after GnP treatment. The Simeoni tumor growth inhibition model with tumor concentrations and empirical indirect response models were used for the PD and TD models, respectively. Clinical outcomes were predicted with reported population estimates of PK parameters in cancer patients.
Results: The PK-PD/TD model simultaneously described the observed tumor volume and paw withdrawal frequency in the von Frey test. For the standard GnP regimen, the model predicted clinical overall response (75.1%), which was overestimated compared to that in a recent phase II study (42.1%) but lower than the observed disease control rate (96.5%). Model simulation showed that dose reduction to less than 40% GnP dose was not effective; a change of dose schedule from every week for 3 weeks to every 2 weeks was a more favorable approach than dose reduction to 60% every week.
Conclusion: The PK-PD/TD model-based translational approach provides a guide for optimal dose determination to avoid severe PN while maintaining antitumor effects during GnP chemotherapy. Further research is needed to enhance its applicability and potential for combination chemotherapy regimens.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00280-023-04625-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!