Pertinent to cryopreservation as well as energy storage and batteries, nonaqueous electrolytes and their mixtures with water were investigated. In particular, specific ion-induced effects on the modulation of a poly(-isopropylacrylamide) (PNIPAM) brush were investigated in various dimethyl sulfoxide (DMSO)-water solvent mixtures. Spectroscopic ellipsometry and neutron reflectometry were employed to probe changes in brush swelling and structure, respectively. In water-rich solvents (i.e., pure water and 6 mol % DMSO), PNIPAM undergoes a swollen to collapsed thermotransition with increasing temperature, whereby a forward Hofmeister series was noted; K and Li electrolytes composed of SCN and I salted-in (stabilized) PNIPAM chains, and electrolytes of Cl and Br salted-out (destabilized) the polymer. The cation was seen to play a lesser role than that of the anion, merely modulating the magnitude of the anion effect. In 70 mol % DMSO, a collapsed to swollen thermotransition was noted for PNIPAM. Here, concentration-dependent specific ion effects were observed; a forward series was observed in 0.2 mol % electrolytes, whereas increasing the electrolyte concentration to 0.9 mol % led to a series reversal. While no thermotransition was observed in pure DMSO, a solvent-induced specific ion series reversal was noted; SCN destabilized the brush and Cl stabilized the brush. Both series reversals are attributed to the delicate balance of interactions between the solvent, solute (ion), and substrate (brush). Namely, the stability of the solvent clusters was hypothesized to drive polymer solvation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10910595 | PMC |
http://dx.doi.org/10.1021/acs.langmuir.3c02596 | DOI Listing |
Sensors (Basel)
December 2024
Department of Chemistry and Biochemistry, Institute of Fluorescence, University of Maryland, Baltimore County, 701 E Pratt St, Baltimore, MD 21202, USA.
We report on the detection and quantification of aqueous DNA by a fluorophore-induced plasmonic current (FIPC) sensing method. FIPC is a mechanism described by our group in the literature where a fluorophore in close proximity to a plasmonically active metal nanoparticle film (MNF) is able to couple with it, when in an excited state. This coupling produces enhanced fluorescent intensity from the fluorophore-MNF complex, and if conditions are met, a current is generated in the film that is intrinsically linked to the properties of the fluorophore in the complex.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Limited Liability Partnership «Institute of Organic Synthesis and Coal Chemistry of the Republic of Kazakhstan», Karaganda 100008, Kazakhstan.
Zinc-imprinted polymer (ZnIP) and non-imprinted polymer (NIP) were synthesized by radical polymerization, and their properties were studied. The novelty of the work lies in the use of humic acids isolated from coals of the Shubarkol deposit (Karaganda, Kazakhstan) as a basis for the imprinted polymer matrix, with methacrylic acid and ethylene glycol dimethacrylate as a functional monomer and a cross-linking agent, respectively. The composition and structure of ZnIP and NIP were characterized using various physicochemical methods.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-Gu, Seongnam-Si 13120, Gyeonggi-do, Republic of Korea.
Si anode materials are promising candidates for next-generation Li-ion batteries (LIBs) because of their high capacities. However, expansion and low conductivity result in rapid performance degradation. Herein, we present a facile one-pot method for pyrolyzing polystyrene sulfonate (PSS) polymers at low temperatures (≤400 °C) to form a thin carbonaceous layer on the silicon surface.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy.
Numerous challenges are posed by the extra-terrestrial environment for space farming and various technological growth systems are being developed to allow for microgreens' cultivation in space. Microgreens, with their unique nutrient profiles, may well integrate the diet of crew members, being a natural substitute for chemical food supplements. However, the space radiation environment may alter plant properties, and there is still a knowledge gap concerning the effects of various types of radiation on plants and specifically on the application of efficient and rapid methods for selecting new species for space farming, based on their radio-resistance.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Xinjiang Key Laboratory for Ecological Adaptation and Evolution of Extreme Environment Biology, College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, China.
Plant plasma membrane (PM) H-ATPase functions as a proton-motive force by exporting cellular protons to establish a transmembrane chemical gradient of H ions and an accompanying electrical gradient. These gradients are crucial for plant growth and development and for plant responses to abiotic and biotic stresses. In this study, a comprehensive identification of the PM H-ATPase gene family was conducted across four cotton species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!