The effect of pulse-modulated sub-RF range (100 kHz-1 MHz) excitation on atmospheric pressure argon plasma jet characteristics is studied. For this, a suitable power supply is developed, offering a sub-µs rise time with control of different parameters, such as voltage amplitude, pulse modulation frequency in the range of 1-30 kHz, and an oscillation frequency of ∼520 kHz, which can affect the plasma behavior. Plasma characteristics, such as reactive species generation, ionic composition, plasma plume length, and gas temperature, are evaluated qualitatively and quantitatively by employing diagnostics such as optical emission spectroscopy, molecular beam mass spectrometry, and optical imaging. Experimental observations indicate that the gas temperature of the plasma jet and plume length increase with the applied voltage for all pulse modulation frequencies, with a maximum value of ∼(325 ± 2 K) and a maximum length of ∼(23 ± 3 mm), respectively, at 30 kHz and 9 kVpp. The emission intensities of OH• and O• lines show an incremental behavior with the applied voltage across all pulse modulation frequencies. The relative yield of different positive (OH+, O+, etc.) and negative (OH-, O-, etc.) ions also increases with the applied voltage for all pulse modulation frequencies with maximum values of ∼(7.6%, 9.9%) and (3.9%, 9.4%), respectively; these are relatively close to RF excited ionic concentrations reported previously. Attaining a high plasma length and species yield signify the features of both kHz and RF atmospheric plasmas. This study offers significant insights and flexibility into exploring the impact of different RF frequency regimes on plasma characteristics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0173873 | DOI Listing |
In this Letter, we propose a high-performance optimized detection scheme based on a neural network (NN) in a receiver digital signal processing (DSP) for bandwidth-limited intensity modulation and direct detection (IM/DD) transmission systems. The NN-based optimized detection scheme consists of two components, an NN-based lookup table (NN-LUT) and an NN-based log-maximum estimation with a fixed number of surviving state (NN-MAP) decoder. The NN-LUT provides more accurate and sufficient information (PI) to the decoder than the conventional filter-form PI without increasing computational complexity.
View Article and Find Full Text PDFThis study reports the observation of complete orthogonally polarized Raman scattering (OPRS) in a 1.0-km high-birefringence fiber (HBF). An incident pump pulse at 1560 nm with an energy of 2.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electrical Engineering, Faculty of Engineering, Al-Azhar University, Cairo, Egypt.
This article presents an innovative asymmetric multilevel inverter (MLI) topology that outperforms conventional counterparts. The introduced topology presents a breakthrough in implementing power electronics control by maximizing specific levels while minimizing switching components. A cutting-edge control scheme for optimal operation of the cascaded half-bridge MLI is presented.
View Article and Find Full Text PDFJ Am Coll Cardiol
January 2025
British Heart Foundation Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom. Electronic address:
Background: An initial decline in estimated glomerular filtration rate (eGFR) often leads to reluctance to continue life-saving therapies in patients with heart failure (HF).
Objectives: The goal of this study was to describe the association between initial decline in eGFR and subsequent clinical outcomes in patients randomized to placebo or finerenone.
Methods: In this prespecified analysis of FINEARTS-HF (Finerenone Trial to Investigate Efficacy and Safety Superior to Placebo in Patients with Heart Failure), we examined the association between initial decline in eGFR (≥15%) from randomization to 1 month and subsequent outcomes in patients assigned to finerenone or placebo.
Sci Adv
January 2025
New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
Deep brain stimulation technology enables the neural modulation with precise spatial control but requires permanent implantation of conduits. Here, we describe a photothermal wireless deep brain stimulation nanosystem capable of eliminating α-synuclein aggregates and restoring degenerated dopamine neurons in the substantia nigra to treat Parkinson's disease. This nanosystem (ATB NPs) consists of gold nanoshell, an antibody against the heat-sensitive transient receptor potential vanilloid family member 1 (TRPV1), and β-synuclein (β-syn) peptides with a near infrared-responsive linker.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!