Effects of bromine-containing counterion salts in directing the structures of medium-sized silver nanoclusters.

Nanoscale

Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.

Published: January 2024

The preparation and structural determination of silver nanoclusters (especially the medium-sized Ag clusters) remain more challenging relative to those of their gold counterparts because of the comparative instability of the former. In this work, three medium-sized Ag clusters were controllably synthesized and structurally determined, namely, [Ag(S-Adm)BrH] (Ag for short), Ag(S-Adm)BrH (Ag for short), and [Ag(S-Adm)Br(NO)H] (Ag for short) nanoclusters. Specifically, the introduction of PPhBr gave rise to the generation of Ag and Ag nanoclusters with homologous compositions and configurations, while the TOABr salt selected Ag as the sole cluster product, whose geometric structure was completely different from those of Ag and Ag nanoclusters. In addition, the optical absorptions and emissions of the three medium-sized silver nanoclusters were compared. The findings in this work not only provide three uniquely medium-sized nanoclusters to enrich the silver cluster family but also point out a new approach (, changing the counterion salt) for the preparation of new nanoclusters with novel structures.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3nr05464kDOI Listing

Publication Analysis

Top Keywords

silver nanoclusters
12
medium-sized silver
8
nanoclusters
8
medium-sized clusters
8
three medium-sized
8
medium-sized
5
effects bromine-containing
4
bromine-containing counterion
4
counterion salts
4
salts directing
4

Similar Publications

Symmetrical and asymmetrical surface structure expansions of silver nanoclusters with atomic precision.

Chem Sci

January 2025

Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei Anhui 230601 China

Controlling symmetrical or asymmetrical growth has allowed a series of novel nanomaterials with prominent physicochemical properties to be produced. However, precise and continuous size growth based on a preserved template has long been a challenging pursuit, yet little has been achieved in terms of manipulation at the atomic level. Here, a correlated silver cluster series has been established, enabling atomically precise manipulation of symmetrical and asymmetrical surface structure expansions of metal nanoclusters.

View Article and Find Full Text PDF

Spectroscopic properties of Tb-doped and Tb-Ag codoped lithium tetraborate (LTB) glasses with LiBO (or LiO-2BO) composition are investigated and analysed using electron paramagnetic resonance (EPR), optical absorption, photoluminescence (PL) and photoluminescence excitation (PLE) spectra, PL decay kinetics and absolute quantum yield (QY) measurements. PL spectra of the investigated glasses show numerous narrow emission bands corresponding to the D → F (J = 6-0) and D → F (J = 5-3) transitions of Tb (4f) ions. The most intense PL band of Tb ions at 541 nm (D → F transition) is characterised by a lifetime slightly exceeding 2.

View Article and Find Full Text PDF

Atomically precise nanoclusters can be assembled into ordered superlattices with unique electronic, magnetic, optical and catalytic properties. The co-crystallization of nanoclusters with functional organic molecules provides opportunities to access an even wider range of structures and properties, but can be challenging to control synthetically. Here we introduce a supramolecular approach to direct the assembly of atomically precise silver nanoclusters into a series of nanocluster‒organic ionic co-crystals with tunable structures and properties.

View Article and Find Full Text PDF

Cytosine-rich and poly(adenine)-tailed tetrahedral DNA framework (TDF) is designed as template (A-TDF) for anchoring silver nanoclusters (AgNCs) and igniting the dual-color fluorescence of AgNCs. The resultant DNA-AgNCs simultaneously emits red and green fluorescence, and the quantum yield of red fluorescence is as high as 44.8%.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are considered reliable biomarkers for a variety of diseases. However, their low abundance in organisms and high sequence similarity of homologous miRNAs make their accurate detection challenging. Here, we constructed a novel fluorescent biosensor for the detection of miRNA-155, a potential biomarker of neuroinflammation, based on duplex-specific nuclease (DSN) assisted amplification and DNA-templated silver nanoclusters (DNA-AgNCs) as fluorescence signal probes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!