AI Article Synopsis

  • Researchers are investigating how morphogenetic movements are coordinated during the development of the wing in pupae, focusing on the mechanical and cellular behaviors involved.
  • Previous studies indicated that wing morphogenesis includes behaviors for stress relaxation and other patterned actions, but this new research shows these active cellular behaviors do not rely on a key signaling pathway called core planar cell polarity (PCP).
  • Experiments demonstrated that while core PCP mutations could alter quick responses to certain disturbances, they do not significantly impact the overall mechanics of tissue shape changes during wing development.

Article Abstract

How morphogenetic movements are robustly coordinated in space and time is a fundamental open question in biology. We study this question using the wing of , an epithelial tissue that undergoes large-scale tissue flows during pupal stages. Previously, we showed that pupal wing morphogenesis involves both cellular behaviors that allow relaxation of mechanical tissue stress, as well as cellular behaviors that appear to be actively patterned (Etournay et al., 2015). Here, we show that these active cellular behaviors are not guided by the core planar cell polarity (PCP) pathway, a conserved signaling system that guides tissue development in many other contexts. We find no significant phenotype on the cellular dynamics underlying pupal morphogenesis in mutants of core PCP. Furthermore, using laser ablation experiments, coupled with a rheological model to describe the dynamics of the response to laser ablation, we conclude that while core PCP mutations affect the fast timescale response to laser ablation they do not significantly affect overall tissue mechanics. In conclusion, our work shows that cellular dynamics and tissue shape changes during pupal wing morphogenesis do not require core PCP as an orientational guiding cue.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10843330PMC
http://dx.doi.org/10.7554/eLife.85581DOI Listing

Publication Analysis

Top Keywords

core pcp
16
pupal wing
12
cellular behaviors
12
laser ablation
12
pcp mutations
8
mutations affect
8
wing morphogenesis
8
cellular dynamics
8
response laser
8
tissue
7

Similar Publications

In neurons, the acquisition of a polarized morphology is achieved upon the outgrowth of a single axon from one of several neurites. Small extracellular vesicles (sEVs), such as exosomes, from diverse sources are known to promote neurite outgrowth and thus may have therapeutic potential. However, the effect of fibroblast-derived exosomes on axon elongation in neurons of the central nervous system under growth-permissive conditions remains unclear.

View Article and Find Full Text PDF

Structural basis of human VANGL-PRICKLE interaction.

Nat Commun

January 2025

State Key Laboratory of Membrane Biology, Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.

Planar cell polarity (PCP) is an evolutionarily conserved process for development and morphogenesis in metazoans. The well-organized polarity pattern in cells is established by the asymmetric distribution of two core protein complexes on opposite sides of the cell membrane. The Van Gogh-like (VANGL)-PRICKLE (PK) pair is one of these two key regulators; however, their structural information and detailed functions have been unclear.

View Article and Find Full Text PDF

Vangl is a planar cell polarity (PCP) core protein essential for aligned cell orientation along the epithelial plane perpendicular to the apical-basal direction, which is important for tissue morphogenesis, development and collective cell behavior. Mutations in Vangl are associated with developmental defects, including neural tube defects (NTDs), according to human cohort studies of sporadic and familial cases. The complex mechanisms underlying Vangl-mediated PCP signaling or Vangl-associated human congenital diseases have been hampered by the lack of molecular characterizations of Vangl.

View Article and Find Full Text PDF

Impaired Wnt/Planar Cell Polarity Signaling in Yellow Nail Syndrome.

Ann Intern Med

December 2024

The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, and School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel (H.B.F.).

Article Synopsis
  • Yellow Nail Syndrome (YNS) is a rare condition marked by yellow, malformed nails, swelling due to lymphedema, and chronic lung issues, typically presenting in adulthood, with potential genetic links suggested.
  • Researchers conducted genetic sequencing and expression studies on 11 patients (6 with congenital YNS and 5 with sporadic YNS) to investigate its underlying causes.
  • Findings revealed biallelic variants in genes related to the Wnt/planar cell polarity pathway in congenital cases, indicating that defects in cellular organization could be key to understanding YNS's development, though the study's small sample size is a limitation.
View Article and Find Full Text PDF

In this article, we present several organic synthetic way to synthesize a family of five polyaromatic molecules based on a cyclophane core. Our strategies revolves around palado-catalyzed substitution on a [2.2]paracyclophane (pCp) building block.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!