In the continuation of previous studies on carbon-rich meso-tetraarylporphyrins featuring 2,7-fluorene units at their periphery, the effect of changing the peripheral dendritic arms for linear arms on their oxygen-photosensitizing ability, their fluorescence and their two-photon absorption (2PA) properties is now analyzed. Thus, starburst porphyrins possessing up to twenty conjugated fluorenyl units were isolated and studied. More precisely, a series of five new free-base porphyrins featuring fully conjugated arms incorporating an increasing number of fluorenyl groups connected via 1,2-alkenyl spacers were synthesized, along with their Zn(II) complexes. Upon excitation in the arm-centred π-π* absorption band, an efficient energy transfer takes place from the peripheral fluorenyl units to the central porphyrin core, leading to intense red-light emission and oxygen photosensitization by the latter. More interestingly, while the linear optical properties of these porphyrins were only slightly improved compared to those of their dendrimer analogues for photodynamic therapy (PDT) or fluorescence imaging, their 2PA cross-sections were much more significantly boosted, evidencing the key role played by different structures on nonlinear optical properties. Finally, by comparison with other porphyrin-based two-photon photosensitizers reported in the literature, we show that these new "semi-disconnected" starburst systems exhibit a remarkable trade-off between intrinsic 2PA, fluorescence and oxygen photosensitization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202303243 | DOI Listing |
J Nanobiotechnology
December 2024
Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases, the Hainan Branch of National Clinical Research Center for Cancer, the First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China.
Limited drug accumulation and an immunosuppressive microenvironment are the major bottlenecks in the treatment of glioblastoma multiforme (GBM). Herein, we report a copper-coordination driven brain-targeting nanoassembly (TCe6@Cu/TP5 NPs) for site-specific delivery of therapeutic agents and efficient immunotherapy by activating the cGAS-STING pathway and downregulating the expression of PD-L1. To achieve this, the mitochondria-targeting triphenylphosphorus (TPP) was linked to photosensitizer Chlorin e6 (Ce6) to form TPP-Ce6 (TCe6), which was then self-assembled with copper ions and thymopentin (TP5) to obtain TCe6@Cu/TP5 NPs.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV-EHU, Apartado 644, 48080 Bilbao, Spain.
Antimicrobial resistance (AMR), a consequence of the ability of microorganisms, especially bacteria, to develop resistance against conventional antibiotics, hampering the treatment of common infections, is recognized as one of the most imperative health threats of this century. Antibacterial photodynamic therapy (aPDT) has emerged as a promising alternative strategy, utilizing photosensitizers activated by light to generate reactive oxygen species (ROS) that kill pathogens without inducing resistance. In this work, we synthesized silica nanoparticles (NPs) of different sizes (20 nm, 80 nm, and 250 nm) functionalized with the photosensitizer Rose Bengal (RB) and a gluconamide ligand, which targets Gram-negative bacteria, to assess their potential in aPDT.
View Article and Find Full Text PDFInorg Chem
December 2024
Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China.
Amide compounds are widely present in drug molecules and natural products, which can be synthesized by acid-amine condensation. It is urgent to design new photocatalysts for achieving both nitroaromatic reduction and C-H oxidation to obtain raw materials, carboxylic acids, and aromatic amines. Herein, a novel isopolymolybdate-incorporated photoactive metal-organic framework, -TPT, was constructed by combining the oxidation catalyst [MoO], Ni(II) cation, and photosensitive ligand 2,4,6-tri(4-pyridyl)-1,3,5-triazine (TPT).
View Article and Find Full Text PDFJ Funct Biomater
December 2024
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia.
X-ray-induced photodynamic therapy (X-PDT) represents a promising new method of cancer treatment. A novel type of nanoscintillator based on cerium fluoride (CeF) nanoparticles (NPs) modified with flavin mononucleotide (FMN) has been proposed. A method for synthesizing CeF-FMN NPs has been developed, enabling the production of colloidal, spherical NPs with an approximate diameter of 100 nm, low polydispersity, and a high fluorescence quantum yield of 0.
View Article and Find Full Text PDFBiomacromolecules
December 2024
School of Chemistry, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
X-ray-induced photodynamic therapy (XPDT) can penetrate deeply into the tumor tissues to overcome the disadvantage of conventional PDT. However, the therapeutic efficacy of XPDT in cancer therapy is still restricted due to the insufficient reactive oxygen species (ROS) generation at a relatively low irradiation dosage. Herein, we present the tumor pH and ROS-responsive polyprodrug micelles to load the X-ray photosensitizer verteporfin (VP) as an ROS production enhancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!