Short-Process Regeneration of Highly Stable Spherical LiCoO Cathode Materials from Spent Lithium-Ion Batteries through Carbonate Precipitation.

Chemistry

National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province Department, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China.

Published: March 2024

High-efficacy recycling of spent lithium cobalt oxide (LiCoO ) batteries is one of the key tasks in realizing a global resource security strategy due to the rareness of lithium (Li) and cobalt (Co) resources. However, it is of great significance to develop the innovative recycle methods for spent LiCoO , simultaneously realizing the efficient recovery of valuable elements and the regeneration of high-performance LiCoO . Herein, a novel strategy of regenerating LiCoO cathode is proposed, which involves the preparation of micro-spherical aluminum (Al)-doped lithium-lacked precursor (Li Co Al CO remarked as "PLCAC") via ammonium bicarbonate coprecipitation. The comprehensive conditions affecting particle growth kinetics, morphology and particle size the has been investigated in detail by physical characterizations and electrochemical measurements. And the optimized Al-doped LiCoO materials with high-density sphericity (LiCo Al O , remarked as "LCAO") shows a high initial specific capacity of 161 mAh g at 0.1 C and excellent capacity retention of 99.5 % within 100 cycles at 1 C in the voltage range of 2.8 to 4.3 V. Our work provides valuable insights into the featured design of LiCoO precursors and cathode materials from spent LiCoO batteries, potentially guaranteeing the high-efficacy recycling and utilization of strategic resources.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202303424DOI Listing

Publication Analysis

Top Keywords

licoo
8
licoo cathode
8
cathode materials
8
materials spent
8
high-efficacy recycling
8
lithium cobalt
8
licoo batteries
8
spent licoo
8
short-process regeneration
4
regeneration highly
4

Similar Publications

In situ formation of LiN interlayer enhancing interfacial stability of solid-state lithium batteries.

J Colloid Interface Sci

January 2025

School of Chemical & Environmental Engineering, China University of Mining and Technology-Beijing, Beijing 100083, PR China. Electronic address:

The uneven deposition of lithium ions has raised safety concerns related to the growth of lithium dendrites on the surface of lithium metal batteries. In this work, an in situ formed LiN interlayer is introduced to regulate the deposition of lithium ions on the lithium metal surface effectively. The LiN interlayer is formed on the lithium metal surface by the reaction of nitrogen gas (N) released from the reaction layer at a specific temperature.

View Article and Find Full Text PDF

Ion bridging enables high-voltage polyether electrolytes for quasi-solid-state batteries.

Nat Commun

January 2025

State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.

Polyether electrolytes have been widely recognized for their favorable compatibility with lithium-metal, yet they are hampered by intrinsically low oxidation thresholds, limiting their potential for realizing high-energy Li-metal batteries. Here, we report a general approach involving the bridge joints between non-lithium metal ions and ethereal oxygen, which significantly enhances the oxidation stability of various polyether electrolyte systems. To demonstrate the feasibility of the ion-bridging strategy, a Zn ion-bridged polyether electrolyte (Zn-IBPE) with an extending electrochemical stability window of over 5 V is prepared, which enables good cyclability in 4.

View Article and Find Full Text PDF

A Ring-Shaped Lithium Metal Anode Enables High-Performance All-Solid-State Batteries Revealed by In Situ L-Band EPR Imaging.

J Phys Chem Lett

January 2025

Shanghai Key Laboratory of Magnetic Resonance, Institute of Magnetic Resonance and Molecular Imaging in Medicine, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, P. R. China.

In traditional operations of all-solid-state lithium metal batteries (ASSLMBs), a small thin lithium metal circular disk is employed as a lithium metal anode (LMA). However, ASSLMBs with a circular-disk LMA often fail in <150 cycles with low capacity retention. In this work, we developed a new ring-shaped LMA to improve cyclability.

View Article and Find Full Text PDF

Electrolyte Chemistry Towards Ultra-High Voltage (4.7 V) And Ultra-Wide Temperature (-30 to 70 °C) LiCoO Batteries.

Angew Chem Int Ed Engl

January 2025

School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, South China Normal University (SCNU), 55 West Zhongsan Rd., Guangzhou, 510006, China.

LiCoO batteries for 3 C electronics demand high charging voltage and wide operating temperature range, which are virtually impossible for existing electrolytes due to aggravated interfacial parasitic reactions and sluggish kinetics. Herein, we report an electrolyte design strategy based on a partially fluorinated ester solvent (i.e.

View Article and Find Full Text PDF

All-solid-state Li-ion batteries (ASSBs) represent a promising leap forward in battery technology, rapidly advancing in development. Among the various solid electrolytes, argyrodite thiophosphates LiPSX (X=Cl, Br, I) stand out due to their high ionic conductivity, structural flexibility, and compatibility with a range of electrode materials, making them ideal candidates for efficient and scalable battery applications. However, despite significant performance advancements, the sustainability and recycling of ASSBs remain underexplored, posing a critical challenge for achieving efficient circular processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!