This research delves into the realm of therapeutic potential within natural compounds derived from L., emphasizing a holistic perspective on medications used in human therapy. Rather than confining the study to their primary actions, the research endeavors to unveil molecular targets for these natural compounds, with a specific focus on their potential applicability in the treatment of rheumatoid arthritis (RA). The study focuses on understanding interactions between specific natural actives that target RA. Fifteen RA target proteins were identified from OMIM, GeneScan and PharmaGKB. Their structures were downloaded from RCSB PDB. Two active components of L. were chosen for mass spectrometry investigation. Ligand characteristics were determined using the ADMETlab and SwissADME software tools. Molecular docking was performed, and the top three complexes were simulated for 200 ns, along with identification of free binding energies. The compounds β-sitosterol-IL-10 (-6.50 kcal/mol), colchicine-IL-10 (-6.01 kcal/mol), linoleic acid-IL-10 (-7.22 kcal/mol) and linoleic acid-IL-10 (-7.22 kcal/mol) exhibited best binding energies. β-Sitosterol and colchicine showed the highest stability in simulations, confirmed by molecular mechanics free energy binding calculations. This work provides insights into the molecular interaction of natural compounds against RA targets, offering potential therapeutic anti-RA medications.Communicated by Ramaswamy H. Sarma.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2023.2294177DOI Listing

Publication Analysis

Top Keywords

natural compounds
12
natural actives
8
rheumatoid arthritis
8
binding energies
8
linoleic acid-il-10
8
acid-il-10 -722 kcal/mol
8
natural
5
comprehending interaction
4
interaction mechanism
4
mechanism natural
4

Similar Publications

The 2-substituted benzimidazole has emerged as a promising heterocyclic compound in the field of drug design. In pursuit of more sustainable photocatalysts for 2-substituted benzimidazole synthesis, the method for coating FeO with V-doped TiO was presented. On the base of characterizing composition, morphology, and properties, the prepared nano-sized FeO@V/TiO composites were used as a heterogeneous photocatalyst to catalyze the synthesis of 2-substituted benzimidazoles under light.

View Article and Find Full Text PDF

Silymarin: a promising modulator of apoptosis and survival signaling in cancer.

Discov Oncol

January 2025

Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, India.

Cancer, one of the deadliest diseases, has remained the epicenter of biological research for more than seven decades. Yet all the efforts for a perfect therapeutic cure come with certain limitations. The use of medicinal plants and their phytochemicals as therapeutics has received much attention in recent years.

View Article and Find Full Text PDF

Microbial biotechnology employs techniques that rely on the natural interactions that occur in ecosystems. Bacteria, including rhizobacteria, play an important role in plant growth, providing crops with an alternative that can mitigate the negative effects of abiotic stress, such as those caused by saline environments, and increase the excessive use of chemical fertilizers. The present study examined the promoting potential of bacterial isolates obtained from the rhizospheric soil and roots of the Asparagus officinalis cultivar UF-157 F2 in Viru, la Libertad, Peru.

View Article and Find Full Text PDF

High-fructose and high-fat diet (HFHFD) has been associated with impaired spermatogenesis, leading to decreased sperm quality and increased male infertility, with similar effects observed in offspring. Cyanidin-3-O-glucoside (C3G), a recognized food antioxidant, has shown promise in protecting in male reproduction and modulating epigenetic modifications. However, its potential role in ameliorating intergenerational inheritance induced by HFHFD remains underexplored.

View Article and Find Full Text PDF

Sexual spores in mushrooms: bioactive compounds, factors and molecular mechanisms of spore formation.

Arch Microbiol

January 2025

Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.

Throughout the life cycle of mushrooms, countless spores are released from the fruiting bodies. The spores have significant implications in the food and medicine industries due to pharmacological effects attributed to their bioactive ingredients. Moreover, high concentration of mushroom spores can induce extrinsic allergic reactions in mushroom cultivation workers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!