Antimicrobial resistance is a pressing global health issue, with millions of lives at risk by 2050, necessitating the development of alternatives with broad-spectrum activity against pathogenic microbes. Antimicrobial peptides provide a promising solution by combating microbes, modulating immunity, and reducing resistance development through membrane and intracellular targeting. PuroA, a synthetic peptide derived from the tryptophan-rich domain of puroindoline A, exhibits potent antimicrobial activity against various pathogens, while the rationally designed P1 peptide demonstrates enhanced antimicrobial activity with its specific composition. This paper investigates the concentration-dependent effects of these cationic peptides on distinct types of vesicles representing strong-negative bacterial cell membranes (S-vesicles), weak-negative bacterial cell membranes (W-vesicles), and mammalian cell membranes (M-vesicles). To investigate the interactions between the peptides and vesicles, small-angle neutron scattering experiments were conducted. The cationic peptides, PuroA and P1, interact with S-vesicles through electrostatic interactions, leading to distinct effects. PuroA accumulates on the vesicle surface, increasing and , aligning with the carpet model. P1 disrupts the vesicle structure at higher concentrations, consistent with the detergent model. Neither peptide significantly affects W-vesicles, emphasizing the role of charge. In uncharged M-vesicles, both peptides decrease and and increase , indicating peptide insertion and altered bilayer properties. These findings provide valuable insights into peptide-membrane interactions and their impact on vesicle structures. Furthermore, the implications of these findings extend to the potential development of innovative antimicrobial agents and drug delivery systems that specifically target bacterial and mammalian membranes. This research contributes to the advancement of understanding peptide-membrane interactions and lays the foundation for the design of approaches for targeting membranes in various biomedical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsabm.3c00824 | DOI Listing |
Appl Microbiol Biotechnol
January 2025
National Engineering Research Center of Green Feeds and Healthy Livestock Industry, Hangzhou, 310058, Zhejiang, China.
The widespread use of antibiotics has led to the emergence of multidrug-resistant bacteria, which pose significant threats to animal health and food safety. Host defense peptides (HDPs) have emerged as promising alternatives because of their unique antimicrobial properties and minimal resistance induction. However, the high costs associated with HDP production and incorporation into animal management practices hinder their widespread application.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Unit of Biophysics, Department of Biochemistry and Molecular Biology, Facultat de Medicina, Av. Can Domènech s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain.
Cell-penetrating peptides (CPPs) can translocate into cells without inducing cytotoxicity. The internalization process implies several steps at different time scales ranging from microseconds to minutes. We combine adaptive Steered Molecular Dynamics (aSMD) with conventional Molecular Dynamics (cMD) to observe nonequilibrium and equilibrium states to study the early mechanisms of peptide-bilayer interaction leading to CPPs internalization.
View Article and Find Full Text PDFDrug Deliv Transl Res
January 2025
Thiomatrix Forschungs- und Beratungs GmbH, Trientlgasse 65, 6020, Innsbruck, Austria.
Aim: It was the aim of this study to compare two different dry reverse micelle (RM) preparation methods for the incorporation of hydrophilic drugs into oral self-emulsifying drug delivery systems (SEDDS).
Methods: Cationic ethacridine lactate, anionic fluorescein sodium salt and the antibiotic peptide bacitracin were solubilized in RM containing sodium docusate, soy phosphatidylcholine and sorbitan monooleate in highly lipophilic oils such as squalane. In the dry addition (DA) method, drugs were directly added to empty RM in their powder form.
PLoS One
January 2025
Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.
Although long-term high dietary sodium consumption often aggravates hypertension and bone loss, sodium in the intestinal lumen has been known to promote absorption of nutrients and other ions, e.g., glucose and calcium.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032.
Record-breaking heatwaves caused by greenhouse effects lead to multiple hyperthermia disorders, the most serious of which is exertional heat stroke (EHS) with the mortality reaching 60 %. Repeat exercise with heat exposure, termed heat acclimation (HA), protects against EHS by fine-tuning feedback control of body temperature (Tb), the mechanism of which is opaque. This study aimed to explore the molecular and neural circuit mechanisms of the HA training against EHS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!