The pyridine-3,5-dicarbonitrile moiety has gained significant attention in the field of materials chemistry, particularly in the development of heavy-metal-free pure organic light-emitting diodes (OLEDs). Extensive research on organic compounds exhibiting thermally activated delayed fluorescence (TADF) has led to numerous patents and research articles. This study focuses on the synthesis and investigation of the semiconducting properties of polyaromatic π-systems containing two and three fragments of pyridine-2,6-dicarbazolyl-3,5-dicarbonitrile. The compounds are synthesized by Sonogashira coupling reactions and characterized by steady-state and time-resolved luminescence spectroscopy. The compounds show efficient intramolecular charge transfer (ICT) from the donor to the acceptor. The photoluminescence (PL) spectra of the solutions of the compounds showed non-structured emission peaks in the visible region, which are attributed to ICT emission. The PL intensities of the solutions of the compounds are enhanced after deoxygenation, which is indicative of TADF. The photoluminescence quantum yields and TADF properties of the compounds are sensitive to the medium. Cyclic voltammetry measurements indicate good hole-blocking and electron-injecting properties due to their high ionization potentials. Photoelectron spectroscopy and time-of-flight measurements reveal good electron-transporting properties for one of the compounds. In general, polyaromatic π-systems with pyridine-3,5-dicarbonitrile fragments demonstrate promising potential for use in organic electronic devices, such as OLEDs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10729123PMC
http://dx.doi.org/10.3762/bjoc.19.139DOI Listing

Publication Analysis

Top Keywords

polyaromatic π-systems
8
solutions compounds
8
properties compounds
8
compounds
7
aromatic systems
4
systems three
4
three pyridine-26-dicarbazolyl-35-dicarbonitrile
4
pyridine-26-dicarbazolyl-35-dicarbonitrile fragments
4
fragments electron-transporting
4
organic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!