Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Four-dimensional (4D) printing combines stimulus-responsive materials with additive manufacturing (AM) technologies. This new concept of printing three-dimensional (3D) objects opens the possibility for solving processing issues, through the production of complex geometries that can undergo programmed temporal changes in response to external stimuli. However, as 4D technology emerges from AM, various challenges still need to be explored, such as the controlled morphing effect. Understanding the aspects related to this behavior, both at the macroscopic level of the structure and at the microscopic level of the polymeric chain, is fundamental. Focused on thermoplastic poly(lactic acid) (PLA) printed by fused deposition modeling, this review addressed the influence of molecular weight, polymeric chain modifications, and 3D printing parameters on the shape change effect of a PLA-based material. The glass transition temperature proved to be a highly important parameter, which can be modified by molecular weight changes. Nozzle temperature, fill density, print patterns, and raster angle are 3D printing parameters that influence the material shape change. Shape recovery is highly dependent on the recovery temperature. Potential applications for shape memory structures are also addressed in this review.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10726180 | PMC |
http://dx.doi.org/10.1089/3dp.2022.0088 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!