Water and high-moisture foods are readily heated in microwaves due to their relatively high dielectric loss factors. Vegetable oil, on the other hand, has a much smaller loss factor (about 1/100 that of water), and is generally believed to be unsuitable for microwave heating. In this study, we conducted experiments to compare heating rates between vegetable oil and pure water in a 2450 MHz microwave oven. We found that the vegetable oil samples were heated rapidly in microwaves, and even faster (1.4-2.0 times) than the water samples. To provide a theoretical explanation, we developed a 3-D computer simulation model. The simulation revealed an approximately 10-fold stronger electric field in oil compared to water, resulting in a similar amount of microwave power being absorbed by the oil and water samples. As the absorbed microwave power was converted into thermal energy, the oil samples were heated faster due to their smaller specific heat (1/2 that of water). But we also found that when the dimensions of oil are smaller than half the microwave wavelength, oil is heated slower than water due to the absence of hot spot areas. This study provides a theoretical explanation for microwave heating of vegetable oils and demonstrates opportunities for utilizing microwave energy to electrify industrial heating of vegetable oils.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10728315PMC
http://dx.doi.org/10.1016/j.crfs.2023.100641DOI Listing

Publication Analysis

Top Keywords

heating vegetable
12
vegetable oils
12
vegetable oil
12
water
8
oil
8
microwave heating
8
oil samples
8
samples heated
8
water samples
8
theoretical explanation
8

Similar Publications

Effects of Food Processing on Allergenicity.

Curr Allergy Asthma Rep

January 2025

Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.

Purpose Of Review: There is an increasing awareness among clinicians that industrial and household food processing methods can increase or decrease the allergenicity of foods. Modification to allergen properties through processing can enable dietary liberations. Reduced allergenicity may also allow for lower risk immunotherapy approaches.

View Article and Find Full Text PDF

Vegetables containing sulfur compounds promote trans-isomerization of unsaturated fatty acids in triacylglycerols during the cooking process.

Food Res Int

January 2025

Faculty of Science & Technology, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi 468-8502, Japan; Graduate School of Environmental and Human Sciences, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi 468-8502, Japan. Electronic address:

Growing evidence indicates that the intake of trans-fatty acids (TFAs) has been associated with a higher risk of cardiovascular disease; therefore, various industrial measures have been taken to reduce the amount of TFAs consumed. However, research on TFAs formed during cooking is limited. Isothiocyanates and polysulfides, which are widely distributed in various vegetables, have recently been shown to promote the cis-trans isomerization of double bonds.

View Article and Find Full Text PDF

Polyphenols as reactive carbonyl substances regulators: A comprehensive review of thermal processing hazards mitigation.

Food Res Int

January 2025

College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China. Electronic address:

Reactive carbonyl species (RCS) are a class of compounds with one or more C = O structures with highly reactive electrophilic properties. This comprehensive review delves into the multifaceted role of RCS in thermally processed foods, where they serve as both crucial intermediates in the development of food color and flavor, as well as precursors of potentially harmful compounds. By exploring the carbonyl pool concept, the impact of RCS equilibrium on the formation and reduction of hazardous substances such as acrylamide, hydroxymethylfurfural, advanced glycation end-products, and heterocyclic amines was elucidated.

View Article and Find Full Text PDF

In this article, we present a unique system for identifying edible oils through the analysis of their thermophysical properties. The method is based on the use of active infrared thermography. The heating of the oils results from the optical absorption of laser radiation at a specified wavelength.

View Article and Find Full Text PDF

Food processing is a fundamental requirement for extending the shelf life of food products, but it often involves heat treatment, which can compromise organoleptic quality while improving food safety. Infrared (IR) radiation has emerged as a transformative technology in food processing, offering a rapid, energy-efficient method for inactivating microbial cells and spores while preserving the nutritional and sensory attributes of food. Unlike traditional heating methods, IR technology enhances heating homogeneity, shortens processing time, and reduces energy consumption, making it an environmentally friendly alternative.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!